What sticky sea creatures can teach us about making glue Jonathan Wilker

Translator: Hiroko Kawano
Reviewer: Tanya Cushman

So I’d like you to join me
on a field trip,

and I want to go to the beach
and take you all to the beach

and so enjoy the sea air
and the salt spray.

And let’s go down to the water’s edge,

and you’ll notice we’re getting
knocked around by the waves,

and it’s really difficult
to stay in place, right?

But now, look down,

and what you’re going to see

is that the rocks are covered
by all sorts of sea creatures

that are just staying
there in place, no problem.

It turns out that if you want to survive
in this really demanding environment,

your very existence is dependent
upon your ability to make glue, actually.

So let me introduce you
to some of the heroes of our story,

just a few of them.

So these are mussels,

and you’ll notice
they’re covering the rocks,

and what they’ve done
is made adhesives,

and they’re sticking down on the rocks,

and they’re sticking
to each other, actually.

So they’re hunkered down
together as a group.

This is a close-up photograph
of an oyster reef,

and oysters, they’re amazing.

What they do is they cement to each other,

and they build these huge,
extensive reef systems.

They can be kilometers long,
they can be meters deep,

and arguably, they are
the most dominant influence

on how healthy any coastal
marine ecosystem is going to be

because what they do
is they’re filtering the water constantly,

they’re holding sand and dirt in place.

Actually, other species
live inside of these reefs.

And then, if you think about
what happens when a storm comes in,

if the storm surge first has to hit
miles of these reefs,

the coast behind it
is going to be protected.

So they’re really quite influential.

If you’ve been to any rocky beach
pretty much anywhere in the world,

you’re probably familiar
with what barnacles look like.

And so what these animals do -

and there’s many others,
these are just three of them -

is they make adhesives,

they stick to each other and to the rocks
and they build communities,

and by doing this, there’s a lot
of survival advantages they get.

So one of them is that just any individual
is subjected to less of the turbulence

and all the damaging features
that can happen from that environment.

So they’re all hunkered down there.

Then, also, there’s a safety
in numbers thing

because it also helps you
keep away the predators,

because if, say, a seagull
wants to pick you up and eat you,

it’s more difficult for the seagull
if they’re stuck together.

And then another thing is it also helps
with reproductive efficiency.

So you can imagine that
when Mr. and Mrs. Barnacle decide,

“OK, it’s time to have
little baby barnacles” -

I won’t tell you
how they do that just yet -

but when they decide it’s time to do that,

it’s a lot easier,

and their reproductive efficiency’s higher
if they’re all living close together.

So we want to understand
how they do this:

How do they stick?

And I can’t really tell you
all the details,

because we’re still trying
to figure it out,

but let me give you a little flavor

of some of the things
that we’re trying to do.

This is a picture of one of the aquarium
systems we have in our lab,

and everything in the image
is part of the system,

and so what we do is we keep -

and you can see in the glass tank there,
at the bottom, a bunch of mussels.

We have the water chilled,
we have the lights cycled,

we actually have turbulence in the system

because the animals make
more adhesives for us

when the water is turbulent.

So we induce them to make the adhesive,

we collect it, we study it.

They’re here in Indiana;

as far as they know,
they’re in Maine in February,

and they seem to be pretty happy,
as far as we can tell.

And then we also work with oysters,

and up top, it’s a photo
of a small reef in South Carolina,

and what we’re most interested in
is how they attach to each other,

how they connect.

So what you can see in the bottom image
is two oysters cementing to each other.

We want to know what’s in between,

and so a lot of times,
we’ll cut them and look down,

and in the next series
of images we have here,

you can see, on the bottom,
we’ll have two shells,

the shell of one animal
and the shell of another animal,

and the cement’s in between.

If you look at the image on the right,

what you can maybe see

is that there’s structure
in the shell of each animal,

but then, the cement
actually looks different.

And so we’re using all sorts
of fancy biology and chemistry tools

to understand what’s going on in there,

and what we’re finding
is the structures are different

and the chemistry is actually different,
and it’s quite interesting.

And in this picture -

I guess, let me step back
before I tell you what this is.

So do you know the cartoon
“The Magic School Bus”?

Or if you’re a little bit older,
“Fantastic Voyage,” right?

And you remember, they had characters

that they would shrink down
to these microscopic levels,

and then they would sort of swirl in

and swim around and fly around
all these biological structures?

I think of this as like that,
except for it’s real in this case.

And so what we did is we have
two oysters that are stuck together,

and this area used to be
completely filled in with the cement,

and what we’re finding is that the cement
has lots of different components in there,

but broadly speaking,
there are hard, non-sticky parts

and there are soft, sticky parts,

and what we did is we removed
the non-sticky parts selectively

to see what’s left -

for what’s actually
attaching the animals -

and what we got is this,

and we can see there’s a sticky adhesive
that’s holding them together.

And I just think it’s a really cool image

because you can imagine yourself
flying in and going back there.

Anyways, those are some of the things
we’re doing to understand

how marine biology
is making these materials.

And from a fundamental perspective,
it’s really exciting to learn.

But what do we want
to do with this information?

Well, there’s a lot
of technological applications

if we can harness
what the animals are doing.

So let me give you one example.

So imagine you’re at home

and you break your favorite figurine
or a mug or something like that.

You want to put it back together.

So where do you go?

You go to my favorite place in town,

which is the glue aisle
of the hardware store.

I know where you spend your nights

because you’re all hip, cool people,
because you’re here,

and you’re going to bars and concerts -

this is where I hang out every night.

So anyways,

so what I want you to do is get one
of every adhesive that’s on the shelf,

bring it home,

but before you try
to put things back together,

I want you to try to do it
in a bucket of water.

It’s won’t work, right?
We all know this.

So obviously, marine biology
has solved this,

so what we need to do is figure out ways
to be able to copy this ourselves.

And one of the issues here

is you can’t just go and get
the materials from the beach,

because if you get some mussels
and try to milk them for their adhesive,

you’ll get a little bit of material,

but you’re never going to have enough
to do anything with, just enough to see.

We need to scale this up,
ideally maybe train-car scale.

So on the top is an image
of one of the types of molecules

that the animals use to make their glue,

and what they are is very long
molecules called proteins,

and these proteins happen to have
some fairly unique parts in them

that bring about the adhesive properties.

What we want to do is take
those little parts of that chemistry,

and we want to put it into
other long molecules that we can get,

but that we can make
on a really large scale,

so you might know them
as plastics or polymers,

and so we’re sort of
simplifying what they do

but then putting that adhesion chemistry
into these large molecules.

And we’ve developed many different
adhesive systems in doing this.

When you make a new adhesive
that looks pretty good, what do you do?

You start running around the lab,
just sticking stuff together.

In this case, we took a bit of a glue
and glued together two pieces of metal.

We hung something from it
to see what it looked like,

so we used a pot of live mussels,
and we thought we were very clever.

(Laughs)

We’re obviously much more
quantitative about this most often,

and so we benchmark
against commercial adhesives,

and we actually have some materials now
that are stronger than superglue.

So to me, that’s really cool.

That’s a good day in the lab:
it’s stronger than superglue.

And here’s something else that we can do.

So this is a tank of seawater,

and then in that syringe
is one of our adhesive formulations.

What we’re doing is we’re dispensing it
completely underwater

on a piece of metal.

And then we want to make
an adhesive bond, or joint.

So we take another piece of metal,

and we put it on there
and just position it.

And you want to let it set up
for a while, give it a chance,

so we’ll just put a weight
on it, nothing fancy.

This is a tube with lead shot
in it, nothing fancy.

And then you let it sit for a while.

So this has never seen air;
it’s completely underwater.

And you pick it up.

I never know what’s going to happen;
I’m always very anxious here.

You pick it up …

and it stuck.

To me, this is really cool.

So we can actually get
very strong underwater adhesion.

Possibly, it’s the strongest or
one of the strongest underwater adhesives

that’s ever been seen.

It’s even stronger than the materials
that the animals produce,

so for us, it’s pretty exciting,
it’s pretty cool.

So what do we want to do
with these things?

Well, here are some products
that you’re probably really familiar with.

So think about your cell phone,
your laptop, plywood in most structures,

the interior of your car, shoes,
phone books - things like this.

They’re all held together with adhesives,

and there’s two main problems

with the adhesives
used in these materials.

The first one is that they’re toxic.

So the worst offender here is plywood.

Plywood or a lot of furniture
or wood laminate in floors -

a main component of the adhesives
here is formaldehyde,

and it’s maybe a compound you’ve heard of.

It’s a gas, and it’s also a carcinogen,

and so we’re constructing
a lot of structures from these adhesives,

and we’re also breathing
a lot of this carcinogen.

So not good, obviously, right?

The other issue is that
these adhesives are all permanent.

And so what do you do with your shoes
or your car or even your laptop

at the end of life,
when you’re done using it?

For the most part,
they end up in landfills.

There’s precious materials in there

we’d love to be able to get out
and recycle them,

but we can’t do it so easily,

because they’re all stuck together
permanently, right?

So here’s one approach we’re taking
to try and solve some of these problems,

and what we’ve done here
is we’ve taken another long molecule

that we can actually get from corn,

and then into that molecule,

we’ve put some of the adhesion
chemistry from the mussels.

So because we’ve got the corn
and we’ve got the mussels,

we call this our surf-and-turf polymer.

And it sticks. It sticks really well.

It’s very strong.

It’s also bio-based. That’s nice.

But maybe more importantly, here,
it’s also degradable;

we can degrade it
under very mild conditions,

just with water.

And so what we can do
is we can set things up

and we can bond them
strongly when we want,

but we can also
take them apart when we want.

It’s something we’re thinking about.

And here is a place
where a lot of us want to be.

Actually, in this specific case,
this is a place we do not want to be,

but we’d like to replace this.

So sutures, staples, screws:

this is how we put you back together
if you’ve had some surgery or an injury.

It’s just awful. It hurts.

In the case of the sutures,

look at how much you’re making
concentrated, mechanical stresses

as you pull things together;

you’re making sites for infection;

poke holes in healthy tissue -
it’s not so good.

Or if you need a plate
to hold together your bones,

look at how much healthy bone
you have to drill out

just to hold the plate in place -
so this is awful.

To me, it looks like these were devised
in a medieval torture chamber,

but it’s our modern surgical joinery.

So I’d love it if we’d get to a place
where we can replace systems like this

with adhesives, right?

It’s not easy.

We’re working on this,
but this is not easy.

So think about what you would need
for adhesives in these cases.

So first of all,

you would need an adhesive
that will set in a wet environment.

And if you look at the silly
little picture there,

it’s just to illustrate that our bodies
are about 60 percent water,

so it’s a wet environment.

It’s also to illustrate that this is why
I am a scientist and not an artist.

I did not miss my calling at all.

So then, the other requirements you need
for a good biomedical adhesive:

it needs to bond strongly, of course,

and it needs to not be toxic.

You don’t want to hurt the patients.

And getting any two of those requirements
in a material is pretty easy.

It’s been done many times.

But getting all three
hasn’t been done; it’s very hard.

And then if you talk to surgeons,
they get really picky:

“Oh, actually I want the adhesive to set
on the same time frame as the surgery.”

Oh, okay.

Or, “Oh, I want the adhesive to degrade

so the patient’s tissues
can remodel the site.”

So this is really hard.
We’re working on it.

This is just one image we have.

So we’re getting all sorts of bones
and skin and soft tissue and hard tissue,

and sometimes we’ll whack it
with a hammer.

Usually, we’re cutting it
in very precise shapes;

then we glue them back together.

We’ve got some exciting results,
some strong materials,

some things that look
like they’re not toxic.

They set wet, looks pretty good,

but I won’t tell you we’ve solved
the wet-adhesion problem,

because we haven’t,

but it’s certainly
in our sights for the future.

So that’s one place that we’d like
to see things go farther down the road.

There’s lots of other places,
too, you can imagine,

we might be better off
if we could get more adhesives in there.

So one thing is cosmetics.

So if you think about people putting
on fake nails or eyelash extensions here -

like this -

what do they use?

They use very toxic
adhesives right now.

So it’s just ripe for replacement.

That’s something we’d like to do.

And there are other places too.

So think about cars and planes.

The lighter you can make them,

the more fuel efficient
they’re going to be.

And so if we can get away
from rivets and from welding

to put more adhesives in there,

then we might be better off

with our future generation
of transportation.

So for us, this all
comes back to the beach.

So we look around and we wonder,
“How do these sea creatures stick?

And what can we do with the technology?”

And I would argue that we have
really a lot of things we can still learn

from biology and from nature.

So what I’d like to encourage
you all to do in the future

is put down your nonrecyclable
laptops and cell phones

and go out and explore the natural world

and then start asking
some of your own questions.

Thanks very much.

(Applause)

译者:Hiroko Kawano
审稿人:Tanya Cushman

所以我想请你

和我一起去实地考察,我想去海滩
,带你们去海滩

,享受大海的空气
和盐雾。

让我们下到水边

,你会注意到我们
被海浪拍打着,

很难留在原地,对吧?

但是现在,往下看

,你会

看到岩石上覆盖
着各种各样的海洋生物

,它们只是
呆在原地,没问题。

事实证明,如果你想
在这个非常苛刻的环境中生存,

你的存在
实际上取决于你制造胶水的能力。

因此,让我向您
介绍我们故事中的一些英雄,

只是其中的几个。

所以这些是贻贝

,你会注意到
它们覆盖在岩石上

,它们所做的
是制成粘合剂

,它们粘在岩石上

,实际上它们相互粘在一起。

所以他们
作为一个整体蹲在了一起。

这是牡蛎礁的特写照片

,牡蛎,它们太棒了。

他们所做的是相互巩固,

并建立了这些巨大而
广阔的珊瑚礁系统。

它们可以长达数公里,
可以深达数米,

并且可以说,它们

对任何沿海
海洋生态系统的健康程度具有最主要的影响,

因为它们所做的
是不断过滤水,

它们拿着沙子 和污垢到位。

实际上,其他物种
生活在这些珊瑚礁内。

然后,如果你想一想
风暴来临时会发生什么,

如果风暴潮首先必须袭击数
英里的这些珊瑚礁,

那么它后面的海岸
就会受到保护。

所以他们真的很有影响力。

如果你去过
世界上几乎任何地方的任何岩石海滩,

你可能对
藤壶的样子很熟悉。

所以这些动物所做的——

还有很多其他的,
这只是它们中的三个

——它们制造粘合剂,

它们相互粘连,粘在岩石上
,它们建立社区

,通过这样做,它们有
很多生存优势 得到。

因此,其中之一是,任何人
都受到较少的湍流


该环境可能发生的所有破坏性特征的影响。

所以他们都蹲在那里。

然后,还有一个数量上的安全
性,

因为它还可以帮助您
远离掠食者,

因为如果海鸥
想要捡起您并吃掉您,

那么
如果它们粘在一起,海鸥就会更加困难。

然后另一件事是它也
有助于提高繁殖效率。

所以你可以想象,
当藤壶先生和夫人决定,

“好吧,是时候
养小藤壶了”——

我现在还不会告诉你
他们是怎么做到的——

但是当他们决定是时候这样做了,

那就是 如果它们都住在一起,它们会容易

得多,并且它们的繁殖效率会更高

所以我们想
了解他们是如何做到的:他们是

如何坚持的?

而且我不能真正告诉你
所有的细节,

因为我们仍在
试图弄清楚,

但让我给你一些

我们正在尝试做的事情的味道。

这是我们实验室中的一个水族系统的照片,

图像中的所有东西都是
系统的一部分

,所以我们所做的就是保留

  • 你可以在底部的玻璃水箱中看到
    , 一堆贻贝。

我们让水冷却,
我们让灯循环,

我们实际上在系统中有湍流,

因为当水湍流时,动物会
为我们制造更多的粘合剂

所以我们诱导他们制造粘合剂,

我们收集它,我们研究它。

他们在印第安纳州;

据他们所知,
他们二月份在缅因州

,据我们所知,他们似乎很开心

然后我们还与牡蛎一起工作

,最重要的是,这是
一张南卡罗来纳州小珊瑚礁的照片

,我们最感兴趣的
是它们如何相互连接,

如何连接。

所以你在下图中可以看到
两个牡蛎相互粘在一起。

我们想知道中间是什么

,所以很多时候,
我们会把它们剪下来然后往下看

,在接下来的
一系列图片中,

你可以看到,在底部,
我们会有两个贝壳,

一种
动物的外壳和另一种动物的外壳,

以及介于两者之间的水泥。

如果你看右边的图片,

你可能会看到

每只动物的壳里都有结构,

但是,水泥
实际上看起来不同。

所以我们正在使用
各种奇特的生物学和化学工具

来了解那里发生了

什么,我们
发现结构不同

,化学实际上也不同
,这很有趣。

在这张照片中——

我想,
在我告诉你这是什么之前,让我退后一步。

那么你知道动画片
《魔法校车》吗?

或者,如果你年纪大了一点,
“神奇之旅”,对吧?

你还记得吗,它们有一些特征

,它们会缩小
到这些微观水平,

然后它们会旋转进去

,四处游动,绕着
所有这些生物结构飞来飞去?

我认为这就像那样,
除了在这种情况下它是真实的。

所以我们所做的是我们有
两个牡蛎粘在一起

,这个区域曾经
完全被水泥填满

,我们发现那里的水泥
有很多不同的成分,

但从广义上讲,
有坚硬的、非粘性的部分

,也有柔软的、粘性的部分

,我们所做的是我们
有选择地移除非粘性部分

以查看剩下的部分 -

实际
附着动物的部分

  • 我们得到的是这个

,我们 可以看到有一种粘性粘合剂
将它们粘在一起。

而且我只是认为这是一个非常酷的图像,

因为您可以想象自己
飞入并返回那里。

无论如何,这些都是
我们正在做的一些事情,以

了解海洋生物学
是如何制造这些材料的。

从基本的角度来看,
学习真的很令人兴奋。

但是我们
想用这些信息做什么呢?

好吧,

如果我们可以
利用动物正在做的事情,就会有很多技术应用。

所以让我给你举一个例子。

所以想象你在家里

,你打破了你最喜欢的小雕像
或杯子或类似的东西。

你想把它重新组合起来。

那么你要去哪里?

你去城里我最喜欢的地方,

那是五金店的胶水过道

我知道你在哪里过夜,

因为你们都是时髦、酷的人,
因为你在这里

,你会去酒吧和音乐会——

这是我每晚都去的地方。

所以无论如何,

所以我想让你做的是把
架子上的每一种粘合剂都

拿回家,

但在你
试着把东西放回去之前,

我想让你试着
在一桶水里做。

它不会工作,对吧?
我们都知道这一点。

很明显,海洋生物学
已经解决了这个问题,

所以我们需要做的就是
想办法自己复制这个问题。

这里的一个问题

是你不能只是
去海滩上获取材料,

因为如果你得到一些贻贝
并尝试用牛奶榨取它们的粘合剂,

你会得到一点材料,

但你是 永远不会有足够
的东西做任何事情,只是足够看。

我们需要扩大规模,
理想情况下可能是火车车厢规模。

所以在最上面是动物用来制造胶水
的一种分子类型的图像

,它们是非常长的
分子,称为蛋白质

,这些蛋白质恰好有
一些相当独特的部分,

它们带来了 粘合性能。

我们想做的是把
化学中的那些小部分

,我们想把它放入
我们可以获得的其他长分子中,

但我们可以
大规模制造,

所以你可能知道它们
是塑料或聚合物,

所以我们在某种程度上
简化了它们的工作

,然后将粘附化学物质
放入这些大分子中。

为此,我们开发了许多不同的
粘合剂系统。

当你制作一种看起来不错的新粘合剂
时,你会怎么做?

你开始在实验室里跑来跑去,
只是把东西粘在一起。

在这种情况下,我们用一点
胶水将两块金属粘在一起。

我们在上面挂了一些东西
来看看它是什么样子,

所以我们用了一盆活贻贝
,我们认为我们很聪明。

(笑)

我们显然
更经常对此进行量化

,因此我们
以商业粘合剂为基准,

实际上我们现在
有一些比强力胶更强的材料。

所以对我来说,这真的很酷。

这是实验室的美好一天:
它比强力胶更牢固。

这是我们可以做的其他事情。

所以这是一个海水罐,

然后在那个注射器
中是我们的粘合剂配方之一。

我们正在做的是将其完全分配到
水下

的一块金属上。

然后我们要进行
粘合剂粘合或连接。

所以我们拿了另一块金属

,我们把它放在那里
并定位它。

而且你想让它设置
一段时间,给它一个机会,

所以我们只是把重量
放在它上面,没什么特别的。

这是一个装有铅的
管子,没什么特别的。

然后你让它坐一会儿。

所以这从未见过空气;
它完全在水下。

你把它捡起来。

我永远不知道会发生什么;
我在这里总是很着急。

你把它捡起来

……它卡住了。

对我来说,这真的很酷。

所以我们实际上可以获得
非常强的水下附着力。

可能,它是有史以来最强的或
最强的水下粘合剂

之一。

它甚至比动物生产的材料还要坚固

所以对我们来说,这非常令人兴奋
,非常酷。

那么我们想
用这些东西做什么呢?

好吧,这里有
一些您可能非常熟悉的产品。

所以想想你的手机
、笔记本电脑、大多数结构中的胶合板、

汽车内部、鞋子、
电话簿——诸如此类的东西。

它们都用粘合剂粘合在一起,

这些材料中使用的粘合剂存在两个主要问题。

第一个是它们有毒。

所以这里最严重的违规者是胶合板。

胶合板或许多家具
或地板中的木质层压板 - 这里

粘合剂的主要成分
是甲醛

,它可能是您听说过的化合物。

它是一种气体,也是一种致癌物

,所以我们
用这些粘合剂建造了很多结构

,我们也吸入
了很多这种致癌物。

所以不好,很明显,对吧?

另一个问题是
这些粘合剂都是永久性的。

那么,当你用完鞋子
、汽车甚至笔记本电脑

后,
你会如何处理它呢?

在大多数情况下,
它们最终进入垃圾填埋场。

里面有珍贵的材料,

我们很想把它们拿出
来回收,

但我们不能那么容易做到,

因为它们都
永久地粘在一起,对吧?

所以这是我们正在
尝试解决其中一些问题的一种方法

,我们在这里所做的
是我们已经采取了另一个

我们实际上可以从玉米中获得的长分子,

然后进入那个分子,

我们已经把
贻贝的一些粘附化学物质。

因此,因为我们有玉米
和贻贝,

所以我们称其为冲浪和草皮聚合物。

它坚持。 它坚持得很好。

它非常强大。

它也是基于生物的。 那很好。

但也许更重要的是,在这里,
它也是可降解的;

我们可以
在非常温和的条件下将其降解,

只需用水即可。

所以我们可以做的
是,我们可以进行设置


我们可以在需要时将它们牢固地结合在一起,

但我们也可以在
需要时将它们分开。

这是我们正在考虑的事情。

这是
一个我们很多人都想去的地方。

实际上,在这种特定情况下,
这是我们不想成为的地方,

但我们想替换它。

所以缝合线、订书钉、螺钉:如果您接受了一些手术或受伤,

这就是我们将您重新组合在一起
的方式。

这太可怕了。 好痛。

在缝合线的情况下,

看看你在把东西拉在一起时产生了多少
集中的机械

应力;

您正在制造感染场所;

在健康组织上戳洞
——不太好。

或者如果你需要一个盘子
来固定你的骨头,

看看你必须钻出多少健康的骨头

才能把盘子固定到位——
所以这很糟糕。

对我来说,这些看起来像是
在中世纪的酷刑室中设计的,

但这是我们现代的外科细木工。

所以,如果我们能找到一个可以用粘合剂代替这样的系统的地方,我会很高兴的

,对吧?

这并不容易。

我们正在努力,
但这并不容易。

所以想想
在这些情况下你需要什么粘合剂。

所以首先,

你需要
一种能在潮湿环境中凝固的粘合剂。

如果你看那张愚蠢的
小图,

它只是为了说明我们的
身体大约有 60% 是水,

所以这是一个潮湿的环境。

这也是为了说明这就是为什么
我是科学家而不是艺术家的原因。

我一点也没有错过我的电话。

那么,
对于良好的生物医学粘合剂,您还需要满足其他要求:

当然,它需要牢固地粘合,

而且它必须没有毒性。

你不想伤害病人。

在材料中获得其中任何两个要求
非常容易。

它已经做过很多次了。

但是
还没有完成所有三个。 这很难。

然后,如果您与外科医生交谈,
他们会变得非常挑剔:

“哦,实际上我希望粘合剂
与手术在同一时间范围内凝固。”

哦好的。

或者,“哦,我希望粘合剂降解,

以便患者的组织
可以重塑该部位。”

所以这真的很难。
我们正在努力。

这只是我们拥有的一张图片。

所以我们得到各种各样的骨头
、皮肤、软组织和硬组织

,有时我们会
用锤子敲打它。

通常,我们将其
切割成非常精确的形状;

然后我们将它们粘在一起。

我们得到了一些令人兴奋的结果,
一些坚固的材料,

一些
看起来没有毒性的东西。

它们湿了,看起来不错,

但我不会告诉你我们已经解决
了湿附着问题,

因为我们还没有,

但它肯定
是我们未来的目标。

所以这是我们
希望看到事情走得更远的一个地方。

还有很多其他的地方
,你可以想象,

如果我们能在那里得到更多的粘合剂,我们可能会更好。

所以一件事是化妆品。

所以如果你想想人们
在这里做假指甲或假睫毛——

像这样——

他们用什么?

他们现在使用非常有毒的
粘合剂。

因此,更换的时机已经成熟。

这是我们想做的事情。

还有其他地方。

所以想想汽车和飞机。

你制造的越轻,它们

的燃油效率
就越高。

因此,如果我们可以
摆脱铆钉和焊接,

从而在其中放置更多粘合剂,

那么我们的下一代交通工具可能会更好

所以对我们来说,这一切
都回到了海滩。

所以我们环顾四周,我们想知道,
“这些海洋生物是如何粘附的

?我们可以用这项技术做什么?”

我认为我们
确实有很多东西可以

从生物学和自然中学到。

所以我想鼓励
大家在未来做的

是放下不可回收的
笔记本电脑和手机

,出去探索自然世界

,然后开始问
自己的一些问题。

非常感谢。

(掌声)