How do crystals work Graham Baird

Deep beneath the geysers and hot springs
of Yellowstone Caldera

lies a magma chamber produced by a
hot spot in the earth’s mantle.

As the magma moves towards
the Earth’s surface,

it crystallizes to form young,
hot igneous rocks.

The heat from these rocks drives
groundwater towards the surface.

As the water cools, ions precipitate out
as mineral crystals,

including quartz crystals from silicon
and oxygen,

feldspar from potassium, aluminum,
silicon, and oxygen,

galena from lead and sulfur.

Many of these crystals have signature
shapes—

take this cascade of pointed quartz,
or this pile of galena cubes.

But what causes them to grow into these
shapes again and again?

Part of the answer lies in their atoms.

Every crystal’s atoms are arranged
in a highly organized, repeating pattern.

This pattern is the defining
feature of a crystal,

and isn’t restricted to minerals—

sand, ice, sugar, chocolate, ceramics,
metals, DNA,

and even some liquids have
crystalline structures.

Each crystalline material’s atomic
arrangement

falls into one of six different families:

cubic, tetragonal, orthorhombic,
monoclinic, triclinic, and hexagonal.

Given the appropriate conditions,

crystals will grow into geometric shapes

that reflect the arrangement
of their atoms.

Take galena, which has a cubic structure
composed of lead and sulfur atoms.

The relatively large lead atoms

are arranged in a three-dimensional
grid 90 degrees from one another,

while the relatively small sulfur atoms
fit neatly between them.

As the crystal grows, locations like these
attract sulfur atoms,

while lead will tend to
bond to these places.

Eventually, they will complete the grid
of bonded atoms.

This means the 90 degree grid pattern
of galena’s crystalline structure

is reflected in the visible
shape of the crystal.

Quartz, meanwhile, has a hexagonal
crystalline structure.

This means that on one plane its atoms
are arranged in hexagons.

In three dimensions, these hexagons are
composed of many interlocking pyramids

made up of one silicon atom
and four oxygen atoms.

So the signature shape of a quartz
crystal

is a six-sided column with pointed tips.

Depending on environmental conditions,

most crystals have the potential to form
multiple geometric shapes.

For example, diamonds, which form deep
in the Earth’s mantle,

have a cubic crystalline structure and can
grow into either cubes or octahedrons.

Which shape a particular
diamond grows into

depends on the conditions where it grows,

including pressure, temperature,
and chemical environment.

While we can’t directly observe growth
conditions in the mantle,

laboratory experiments have shown some
evidence

that diamonds tend to grow into cubes at
lower temperatures

and octahedrons at higher temperatures.

Trace amounts of water, silicon,
germanium, or magnesium

might also influence a diamond’s shape.

And diamonds never naturally grow into the
shapes found in jewelry—

those diamonds have been cut to
showcase sparkle and clarity.

Environmental conditions can also
influence whether crystals form at all.

Glass is made of melted quartz sand,

but it isn’t crystalline.

That’s because glass cools
relatively quickly,

and the atoms do not have time to arrange
themselves

into the ordered structure
of a quartz crystal.

Instead, the random arrangement
of the atoms in the melted glass

is locked in upon cooling.

Many crystals don’t form geometric shapes

because they grow in extremely close
quarters with other crystals.

Rocks like granite are full of crystals,

but none have recognizable shapes.

As magma cools and solidifies,

many minerals within it crystallize at the
same time and quickly run out of space.

And certain crystals, like turquoise,

don’t grow into any discernible geometric
shape in most environmental conditions,

even given adequate space.

Every crystal’s atomic structure has
unique properties,

and while these properties may not have
any bearing on human emotional needs,

they do have powerful applications
in materials science and medicine.

在黄石火山口的间歇泉和温泉

深处,有一个由
地幔热点产生的岩浆房。

随着岩浆
向地球表面移动,

它结晶形成年轻的
炽热火成岩。

这些岩石产生的热量将
地下水推向地表。

随着水的冷却,离子沉淀
为矿物晶体,

包括来自硅
和氧的石英晶体,

来自钾、铝、
硅和氧的长石,

来自铅和硫的方铅矿。

这些晶体中的许多都具有标志性的
形状——

以这种尖晶石的级联,
或这堆方铅矿立方体为例。

但是是什么导致它们一次又一次地长成这些
形状呢?

部分答案在于它们的原子。

每个晶体的原子都
以高度有组织的重复模式排列。

这种图案是晶体的决定性
特征

,不仅限于矿物——

沙子、冰、糖、巧克力、陶瓷、
金属、DNA,

甚至一些液体都具有
晶体结构。

每种晶体材料的原子
排列

都属于六个不同的族之一:

立方、四方、斜方、
单斜、三斜和六方。

在适当的条件下,

晶体将生长成

反映
其原子排列的几何形状。

以方铅矿为例,它具有
由铅和硫原子组成的立方结构。

相对较大的铅原子

排列成
一个相互呈 90 度角的三维网格,

而相对较小的硫原子则
整齐地排列在它们之间。

随着晶体的生长,这些位置会
吸引硫原子,

而铅会倾向于
与这些位置结合。

最终,它们将完成
键合原子的网格。

这意味着
方铅矿晶体结构

的 90 度网格图案反映在晶体的可见
形状中。

与此同时,石英具有六方
晶体结构。

这意味着在一个平面上,它的原子
排列成六边形。

在三个维度上,这些六边形
由许多

由一个硅原子
和四个氧原子组成的互锁金字塔组成。

因此,石英晶体的标志性形状

是带有尖头的六面柱。

根据环境条件,

大多数晶体有可能形成
多种几何形状。

例如,在地幔深处形成的钻石

具有立方晶体结构,可以
长成立方体或八面体。

特定钻石长成哪种形状

取决于其生长条件,

包括压力、温度
和化学环境。

虽然我们无法直接观察
地幔中的生长条件,但

实验室实验表明,一些
证据

表明,钻石在较低温度下倾向于长成立方体,

而在较高温度下倾向于长成八面体。

微量的水、硅、
锗或镁

也可能影响钻石的形状。

钻石永远不会自然地长成
珠宝中的形状——

这些钻石经过切割以
展示闪耀和净度。

环境条件也会
影响晶体是否形成。

玻璃是由熔化的石英砂制成的,

但它不是结晶的。

这是因为玻璃冷却得
相对较快

,原子没有时间将
自己

排列成石英晶体的有序结构。

相反,
熔融玻璃中原子的随机排列

在冷却时被锁定。

许多晶体不会形成几何形状,

因为它们与其他晶体非常接近地生长

像花岗岩这样的岩石充满了晶体,

但没有一个具有可识别的形状。

随着岩浆冷却和凝固,

其中的许多矿物质同时结晶
并迅速耗尽空间。

在大多数环境条件下,某些晶体,如绿松石,即使有足够的空间,

也不会长成任何可辨别的几何
形状

每个晶体的原子结构都具有
独特的特性

,虽然这些特性可能
与人类的情感需求没有任何关系,

但它们确实
在材料科学和医学中具有强大的应用。