Whats in the air you breathe Amy Hrdina and Jesse Kroll

Take a deep breath.

In that single intake of air,

your lungs swelled with roughly
25 sextillion molecules,

ranging from compounds produced days ago,

to those formed billions of years
in the past.

In fact, many of the molecules
you’re breathing were likely

exhaled by members
of ancient civilizations

and innumerable humans since.

But what exactly are we all breathing?

Roughly 78% of Earth’s atmosphere
is composed of nitrogen

generated by volcanic activity
deep beneath the planet’s crust.

The next major ingredient is oxygen,
accounting for 21% of Earth’s air.

While oxygen molecules have been around
as long as Earth’s oceans,

oxygen gas didn’t appear until
ocean dwelling microorganisms

evolved to produce it.

Finally, .93% of our air is argon,

a molecule formed from the radioactive
decay of potassium

in Earth’s atmosphere, crust, and core.

Together, all these dry gases
make up 99.93% of each breath you take.

Depending on when and where you are,
the air may also contain some water vapor.

But even more variable
is that remaining .07%,

which contains a world of possibilities.

This small slice of air is composed
of numerous small particles

including pollen, fungal spores,
and liquid droplets,

alongside trace gases
like methane and carbon dioxide.

The specific cocktail of natural
and man-made compounds

changes dramatically from place to place.

But no matter where you are,

.07% of every breath you take
likely contains man-made pollutants—

potentially including toxic compounds
that can cause lung disease, cancer,

and even DNA damage.

There’s a wide variety of known pollutants
but they all fall into two categories.

The first are primary pollutants.

These toxic compounds are directly emitted

from a man-made
or naturally occurring source.

However, they don’t always come
from the places you’d expect.

Some large factories mostly generate
water vapor,

with only small quantities of pollutants
mixed in.

Conversely, burning wood or dung can
create polycyclic aromatic hydrocarbons;

dangerous compounds that have been
linked to several types of cancer,

as well as long-term DNA damage.

In all cases, pollutants interact with
regional weather patterns and topography,

which can keep compounds local
or spread them kilometers away.

When these molecules travel
through the air, a transformation occurs.

Natural compounds called oxidants,
formed by oxygen and sunlight,

break down the pollutants.

Sometimes, these reactions make pollutants
more easily washed out by rain.

But in other cases, they result
in even more toxic secondary pollutants.

For example, when factories burn coal,

they release high concentrations
of sulfur oxides.

These molecules oxidize to form sulfates,

which condense with water vapor in the air
to form a blanket of fine particles

that impair visibility
and cause severe lung damage.

This so-called sulfurous smog was
well-known in 20th century London

and continues to plague cities
like Beijing.

Since the advent of cars,

another secondary pollutant
has taken center stage.

Exhaust from fossil fuel-burning vehicles
releases nitrogen oxides and hydrocarbons

which react to form ozone.

And while some ozone
in the upper atmosphere

helps shield us from ultraviolet rays,
on the ground,

this gas can form alongside secondary
particles and create photochemical smog.

This brown fog can be found covering
densely packed cities,

making seeing difficult
and breathing hazardous.

It also contributes to climate change
by trapping heat in the atmosphere.

In recent decades, industrial activity
has contributed to a huge spike

in various trace gas emissions,

fundamentally changing the air
we all breathe.

Many places have already responded
with countermeasures.

Most cars produced since the 1980′s
are equipped with catalytic converters

that reduce the emission
of carbon monoxide and nitrogen oxides.

And today, places like Beijing are
battling smog

by electrifying
their energy infrastructure

and limiting automobile emissions
altogether.

But while moving away from fossil fuels
is essential,

there’s no universal remedy
for air pollution.

Different regions need to respond
with unique regulations

that account for their local pollutants.

Because no matter where you live,
we all share the same air.

深吸一口气。

在单次吸入空气中,

你的肺部膨胀了大约
25 个六万亿个分子,

从几天前产生的化合物

到过去数十亿年形成的化合物

事实上,
你呼吸的许多分子很可能

是古代文明成员

和无数人类呼出的。

但我们到底在呼吸什么?

大约 78% 的地球
大气由地壳深处

的火山活动产生的氮组成

下一个主要成分是氧气,
占地球空气的 21%。

虽然氧分子
与地球的海洋一样长,

但直到
海洋微生物

进化产生氧气才出现。

最后,我们的空气中有 0.93% 是氩气,

这是一种由

地球大气、地壳和地核中钾的放射性衰变形成的分子。

所有这些干燥的
气体加起来占您每次呼吸的 99.93%。

根据您所处的时间和地点
,空气中也可能含有一些水蒸气。

但更大的变数
是剩下的 0.07%,

它包含了一个充满可能性的世界。

这小片空气
由许多小颗粒组成,

包括花粉、真菌孢子
和液滴,

以及
甲烷和二氧化碳等微量气体。

天然
和人造

化合物的特定混合物因地而异。

但无论您身在何处,

您每次呼吸的 0.07% 都
可能含有人造污染物——

可能
包括可导致肺部疾病、癌症

甚至 DNA 损伤的有毒化合物。

已知的污染物种类繁多,
但它们都分为两类。

首先是初级污染物。

这些有毒化合物直接

从人造
或天然来源排放。

但是,它们并不总是
来自您期望的地方。

一些大型工厂主要产生
水蒸气

,只有少量污染物
混入。

相反,燃烧木材或粪便会
产生多环芳烃;

与多种癌症

以及长期 DNA 损伤有关的危险化合物。

在所有情况下,污染物都会与
区域天气模式和地形相互作用,

从而使化合物保持在当地
或将其扩散到数公里之外。

当这些分子
在空气中传播时,就会发生转变。 由氧气和阳光形成的

称为氧化剂的天然化合物可以

分解污染物。

有时,这些反应会使污染物
更容易被雨水冲走。

但在其他情况下,它们会
导致毒性更大的二次污染物。

例如,当工厂燃烧煤炭时,

它们会释放出高浓度
的硫氧化物。

这些分子氧化形成硫酸盐,硫酸盐

与空气中的水蒸气凝结
形成一层细小颗粒

,影响能见度
并导致严重的肺损伤。

这种所谓的硫磺烟雾
在 20 世纪的伦敦广为人知,

并继续困扰
着北京等城市。

自汽车问世以来,

另一种二次污染物
已成为焦点。

燃烧化石燃料的车辆
排放的废气会释放氮氧化物和碳氢化合物

,它们会发生反应形成臭氧。

虽然
高层大气中的一些臭氧

有助于保护我们免受紫外线的伤害,但
在地面上,

这种气体可以与次级粒子一起形成
并产生光化学烟雾。

可以发现这种棕色的雾覆盖了
人口密集的城市,

使人难以看清
,呼吸也很危险。

它还
通过在大气中捕获热量而导致气候变化。

近几十年来,工业活动

导致各种微量气体排放量激增,

从根本上改变了
我们呼吸的空气。

许多地方已经做出
了应对措施。

自 1980 年代以来生产的大多数汽车
都配备了催化转化

器,可减少
一氧化碳和氮氧化物的排放。

而今天,像北京这样的地方正在

通过
电气化能源基础设施

和完全限制汽车排放来对抗雾
霾。

但是,虽然远离化石燃料
是必不可少的,

但没有
针对空气污染的通用补救措施。

不同地区需要针对当地污染物
制定独特的法规

来应对。

因为无论您住在哪里,
我们都共享相同的空气。