How North America got its shape Peter J. Haproff

The geography of our planet is in flux.

Each continent has ricocheted around
the globe on one or more tectonic plates,

changing quite dramatically with time.

Today, we’ll focus on North America

and how its familiar landscape
and features

emerged over hundreds
of millions of years.

Our story begins about
750 million years ago.

As the super continent Rodinia
becomes unstable,

it rifts along what’s now the west coast
of North America

to create the Panthalassa Ocean.

You’re seeing an ancestral continent
called Laurentia,

which grows over the next few hundred
million years

as island chains collide with it
and add land mass.

We’re now at 400 million years ago.

Off today’s east coast, the massive
African plate inches westward,

closing the ancient Iapetus Ocean.

It finally collides with Laurentia
at 250 million years

to form another supercontinent Pangea.

The immense pressure causes
faulting and folding,

stacking up rock to form
the Appalachian Mountains.

Let’s fast forward a bit.

About 100 million years later,
Pangea breaks apart,

opening the Southern Atlantic Ocean

between the new North American Plate
and the African Plate.

We forge ahead,

and now the eastward-moving
Farallon Plate

converges with the present-day west coast.

The Farallon Plate’s greater density
makes it sink beneath North America.

This is called subduction,

and it diffuses water into
the magma-filled mantle.

That lowers the magma’s melting point

and makes it rise into the overlying
North American plate.

From a subterranean chamber,
the magma travels upwards

and erupts along a chain of volcanos.

Magma still deep underground slowly cools,

crystallizing to form solid rock,

including the granite now found
in Yosemite National Park

and the Sierra Nevada Mountains.

We’ll come back to that later.

Now, it’s 85 million years ago.

The Farallon Plate becomes less steep,

causing volcanism to stretch eastward
and eventually cease.

As the Farallon Plate subducts,

it compresses North America,

thrusting up mountain ranges
like the Rockies,

which extend over 3,000 miles.

Soon after, the Eurasian Plate rifts
from North America,

opening the North Atlantic Ocean.

We’ll fast forward again.

The Colorado Plateau now uplifts,

likely due to a combination
of upward mantle flow

and a thickened North American Plate.

In future millennia, the Colorado River
will eventually sculpt the plateau

into the epic Grand Canyon.

30 million years ago, the majority of
the Farallon Plate sinks into the mantle,

leaving behind only small corners
still subducting.

The Pacific
and North American plates converge

and a new boundary
called the San Andreas Fault forms.

Here, North America moves to the south,

sliding against the Pacific Plate,
which shifts to the north.

This plate boundary still exists today,

and moves about 30 millimeters per year

capable of causing
devastating earthquakes.

The San Andreas also pulls apart
western North America

across a wide rift zone.

This extensional region is called
the Basin and Range Province,

and through uplift and erosion,

is responsible for exposing the once deep
granite of Yosemite and the Sierra Nevada.

Another 15 million years off the clock,

and magma from the mantle burns
a giant hole into western North America,

periodically erupting onto the surface.

Today, this hotspot feeds
an active supervolcano

beneath Yellowstone National Park.

It hasn’t erupted
in the last 174,000 years,

but if it did,

its sheer force could blanket
most of the continent with ash

that would blacken the skies
and threaten humanity.

The Yellowstone supervolcano
is just one reminder

that the Earth continues
to seethe below our feet.

Its mobile plates put the planet
in a state of constant flux.

In another few hundred million years,

who knows how the landscape
of North America will have changed.

As the continent slowly morphs
into something unfamiliar,

only geological time will tell.

我们星球的地理环境在不断变化。

每个大陆都
在一个或多个构造板块上在全球范围内跳跃,

随着时间的推移发生了相当大的变化。

今天,我们将专注于北美

,以及它熟悉的景观
和特征

是如何
在数亿年中出现的。

我们的故事开始于大约
7.5 亿年前。

随着超级大陆罗迪尼亚
变得不稳定,

它沿着现在的

北美西海岸裂开,形成了潘塔拉萨海洋。

你会看到一个叫做劳伦蒂亚的祖先大陆

随着岛链与它的碰撞
并增加陆地面积,它会在接下来的几亿年里不断发展壮大。

我们现在处于 4 亿年前。

在今天的东海岸附近,巨大的
非洲板块向西移动了几英寸,

关闭了古老的土卫八海洋。

它最终
在 2.5 亿年

与劳伦蒂亚相撞,形成另一个超大陆盘古大陆。

巨大的压力导致
断层和折叠,

堆积岩石
形成阿巴拉契亚山脉。

让我们快进一点。

大约 1 亿年后,
盘古大陆分裂,

在新的北美板块
和非洲板块之间打开了南大西洋。

我们砥砺前行

,现在向东移动的
法拉隆板块

与现在的西海岸会合。

法拉隆板块较高的密度
使其沉入北美之下。

这被称为俯冲

,它将水扩散
到充满岩浆的地幔中。

这降低了岩浆的熔点

,使其上升到上覆的
北美板块中。

从地下室中
,岩浆向上移动

并沿着一连串的火山喷发。

仍在地下深处的岩浆缓慢冷却,

结晶形成坚固的岩石,

包括现在
在优胜美地国家公园

和内华达山脉发现的花岗岩。

我们稍后再谈。

现在,它是 8500 万年前。

法拉隆板块变得不那么陡峭,

导致火山活动向东伸展
并最终停止。

随着法拉隆板块的俯冲,

它压缩了北美

,将落基山脉等山脉推高

了 3,000 多英里。

不久之后,欧亚板块
从北美裂开,

打开了北大西洋。

我们将再次快进。

科罗拉多高原现在隆起,

可能是
由于向上的地幔流

和加厚的北美板块的结合。

在未来的千年里,科罗拉多河
最终将把高原塑造

成史诗般的大峡谷。

3000 万年前,
法拉隆板块的大部分沉入地幔,

只留下
仍在俯冲的小角落。

太平洋
板块和北美板块交汇在一起

,形成了一个
称为圣安地列斯断层的新边界。

在这里,北美向南移动,与向北移动

的太平洋板块滑动

这个板块边界今天仍然存在

,每年移动约 30 毫米,

能够引发
毁灭性地震。

圣安地列斯河还将
北美西部拉开

一个宽阔的裂谷带。

这个伸展区域被
称为盆地和山脉省

,通过隆起和侵蚀,

导致优胜美地和内华达山脉曾经很深的花岗岩暴露出来。

又过了 1500 万年,

地幔中的岩浆在
北美西部燃烧了一个巨大的洞,

周期性地喷发到地表。

今天,这个热点
为黄石国家公园下方的一座活跃的超级火山提供食物

在过去的 174,000 年里它没有爆发过,

但如果它真的爆发了,

它的强大力量可能会
用灰烬覆盖整个大陆,

这会使天空变黑
并威胁到人类。

黄石超级火山
只是提醒我们

,地球
继续在我们脚下沸腾。

它的移动板使地球
处于不断变化的状态。

再过几亿年,

谁知道
北美的景观会发生怎样的变化。

随着大陆慢慢
变成陌生的东西,

只有地质时间会证明一切。