This ancient rock is changing our theory on the origin of life Tara Djokic

The Earth is 4.6 billion years old,

but a human lifetime often lasts
for less than 100 years.

So why care about
the history of our planet

when the distant past seems
so inconsequential to everyday life?

You see, as far as we can tell,

Earth is the only planet
in our solar system

known to have sparked life,

and the only system able to provide
life support for human beings.

So why Earth?

We know Earth is unique
for having plate tectonics,

liquid water on its surface

and an oxygen-rich atmosphere.

But this has not always been the case,

and we know this because ancient rocks
have recorded the pivotal moments

in Earth’s planetary evolution.

And one of the best places
to observe those ancient rocks

is in the Pilbara of Western Australia.

The rocks here are 3.5 billion years old,

and they contain some of the oldest
evidence for life on the planet.

Now, often when we think of early life,

we might imagine a stegosaurus

or maybe a fish crawling onto land.

But the early life that I’m talking about

is simple microscopic life, like bacteria.

And their fossils are often preserved
as layered rock structures,

called stromatolites.

This simple form of life
is almost all we see in the fossil record

for the first three billion years
of life on Earth.

Our species can only be traced
back in the fossil record

to a few hundred thousand years ago.

We know from the fossil record,

bacteria life had grabbed
a strong foothold

by about 3.5 to four billion years ago.

The rocks older than this
have been either destroyed

or highly deformed
through plate tectonics.

So what remains a missing
piece of the puzzle

is exactly when and how
life on Earth began.

Here again is that ancient
volcanic landscape in the Pilbara.

Little did I know that our research here
would provide another clue

to that origin-of-life puzzle.

It was on my first field trip here,

toward the end of a full,
long week mapping project,

that I came across something
rather special.

Now, what probably looks like
a bunch of wrinkly old rocks

are actually stromatolites.

And at the center of this mound
was a small, peculiar rock

about the size of a child’s hand.

It took six months before we inspected
this rock under a microscope,

when one of my mentors
at the time, Malcolm Walter,

suggested the rock resembled geyserite.

Geyserite is a rock type that only forms

in and around the edges
of hot spring pools.

Now, in order for you to understand
the significance of geyserite,

I need to take you back
a couple of centuries.

In 1871, in a letter
to his friend Joseph Hooker,

Charles Darwin suggested:

“What if life started
in some warm little pond

with all sort of chemicals

still ready to undergo
more complex changes?”

Well, we know of warm little ponds.
We call them “hot springs.”

In these environments, you have hot water

dissolving minerals
from the underlying rocks.

This solution mixes with organic compounds

and results in a kind of chemical factory,

which researchers have shown
can manufacture simple cellular structures

that are the first steps toward life.

But 100 years after Darwin’s letter,

deep-sea hydrothermal vents, or hot vents,
were discovered in the ocean.

And these are also chemical factories.

This one is located along
the Tonga volcanic arc,

1,100 meters below sea level
in the Pacific Ocean.

The black smoke that you see billowing
out of these chimneylike structures

is also mineral-rich fluid,

which is being fed off by bacteria.

And since the discovery
of these deep-sea vents,

the favored scenario for an origin of life
has been in the ocean.

And this is for good reason:

deep-sea vents are well-known
in the ancient rock record,

and it’s thought that the early Earth
had a global ocean

and very little land surface.

So the probability that deep-sea vents
were abundant on the very early Earth

fits well with an origin of life

in the ocean.

However …

our research in the Pilbara
provides and supports

an alternative perspective.

After three years, finally, we were
able to show that, in fact,

our little rock was geyserite.

So this conclusion suggested
not only did hot springs exist

in our 3.5 billion-year-old
volcano in the Pilbara,

but it pushed back evidence for life
living on land in hot springs

in the geological record of Earth

by three billion years.

And so, from a geological perspective,

Darwin’s warm little pond
is a reasonable origin-of-life candidate.

Of course, it’s still debatable
how life began on Earth,

and it probably always will be.

But it is clear that it’s flourished;

it has diversified,

and it has become ever more complex.

Eventually, it reached
the age of the human,

a species that has begun
to question its own existence

and the existence of life elsewhere:

Is there a cosmic community
waiting to connect with us,

or are we all there is?

A clue to this puzzle again
comes from the ancient rock record.

At about 2.5 billion years ago,

there is evidence that bacteria
had begun to produce oxygen,

kind of like plants do today.

Geologists refer to
the period that followed

as the Great Oxidation Event.

It is implied from rocks
called banded iron formations,

many of which can be observed as
hundreds-of-meter-thick packages of rock

which are exposed in gorges

that carve their way through
the Karijini National Park

in Western Australia.

The arrival of free oxygen allowed
two major changes to occur on our planet.

First, it allowed complex life to evolve.

You see, life needs oxygen
to get big and complex.

And it produced the ozone layer,
which protects modern life

from the harmful effects
of the sun’s UVB radiation.

So in an ironic twist, microbial life
made way for complex life,

and in essence, relinquished
its three-billion-year reign

over the planet.

Today, we humans dig up
fossilized complex life

and burn it for fuel.

This practice pumps vast amounts
of carbon dioxide into the atmosphere,

and like our microbial predecessors,

we have begun to make
substantial changes to our planet.

And the effects of those
are encompassed by global warming.

Unfortunately, the ironic twist here
could see the demise of humanity.

And so maybe the reason
we aren’t connecting with life elsewhere,

intelligent life elsewhere,

is that once it evolves,

it extinguishes itself quickly.

If the rocks could talk,

I suspect they might say this:

life on Earth is precious.

It is the product of
four or so billion years

of a delicate and complex co-evolution

between life and Earth,

of which humans only represent
the very last speck of time.

You can use this information
as a guide or a forecast –

or an explanation as to why it seems
so lonely in this part of the galaxy.

But use it to gain some perspective

about the legacy that you
want to leave behind

on the planet that you call home.

Thank you.

(Applause)

地球有 46 亿年的历史,

但人类的寿命
往往不到 100 年。

那么

当遥远的过去似乎
对日常生活如此无关紧要时,为什么要关心我们星球的历史呢?

你看,据我们所知,

地球
是我们太阳系中

已知的唯一激发生命的行星,

也是唯一能够
为人类提供生命支持的系统。

那么为什么是地球?

我们知道地球的独特之处在于
具有板块构造、

其表面的液态水

和富氧大气。

但情况并非总是如此

,我们之所以知道这一点,是因为古代
岩石记录

了地球行星演化的关键时刻。

观察这些古老岩石的最佳地点之一

是西澳大利亚的皮尔巴拉。

这里的岩石有 35 亿年的历史

,它们包含
了地球上一些最古老的生命证据。

现在,通常当我们想到早期生活时,

我们可能会想象一条剑龙

或一条爬行在陆地上的鱼。

但我所说的早期生命

是简单的微观生命,比如细菌。

他们的化石通常
以层状岩石结构的形式保存下来,

称为叠层石。

这种简单的生命
形式几乎是我们在地球上前 30 亿年的化石记录中看到的所有生命形式

我们的物种
在化石记录中只能

追溯到几十万年前。

我们从化石记录中知道

,大约 3.5 到 40 亿年前,细菌生命已经站稳脚跟。

比这更古老的岩石
已经被板块构造破坏

或高度
变形。

因此,仍然缺少的
一块是地球

上生命的确切时间和方式

这里又是皮尔巴拉那古老的
火山景观。

我几乎不知道我们在这里的研究

将为这个生命起源之谜提供另一条线索。

这是我第一次来这里实地考察,

在一个完整的、
为期一周的制图项目即将结束时

,我遇到了一些
相当特别的东西。

现在,看起来像
一堆皱巴巴的老

岩石实际上是叠层石。

在这个土丘的中心,
有一块奇特的小石头,

大约有一个孩子的手那么大。

我们花了六个月的时间才
在显微镜下检查这块岩石,

当时我的一位导师
马尔科姆·沃尔特(Malcolm Walter)

建议这块岩石类似于 geyserite。

Geyserite是一种仅

在温泉池边缘和周围形成的岩石类型

现在,为了让你了解
geyserite 的重要性,

我需要带你
回到几个世纪前。

1871 年,查尔斯·达尔文在
给朋友约瑟夫·胡克的一封信中

建议:

“如果生命开始
于某个温暖的小池塘

,各种化学物质

仍准备好经历
更复杂的变化,那会怎样?”

好吧,我们知道温暖的小池塘。
我们称它们为“温泉”。

在这些环境中,你有热水

溶解
底层岩石中的矿物质。

这种溶液与有机化合物混合

,形成一种化学工厂

,研究人员已经证明,这种工厂
可以制造简单的细胞结构

,这是迈向生命的第一步。

但是在达尔文的信 100 年后

,在海洋中发现了深海热液喷口或热喷口

这些也是化工厂。

这个位于
汤加火山弧沿线,位于太平洋

海平面以下 1,100 米处

你看到
从这些烟囱状结构中冒出的黑烟

也是富含矿物质的液体,

它被细菌吸收了。

自从
发现这些深海喷口以来

,最受青睐的生命起源场景
一直在海洋中。

这是有充分理由的:

深海喷口
在古代岩石记录中是众所周知的

,人们认为早期地球
有一个全球性的海洋,

而陆地表面很少。

因此,
地球早期深海喷口丰富的可能性与海洋中

的生命起源非常吻合

然而……

我们在皮尔巴拉的研究
提供并支持

了另一种观点。

三年后,我们终于
能够证明,事实上,

我们的小石头是辉光岩。

因此,这一结论表明,
不仅

在我们拥有 35 亿年历史
的皮尔巴拉火山中存在温泉,

而且还将地球地质记录中关于生活在陆地温泉中的生命的证据推后

了 30 亿年。

因此,从地质学的角度来看,

达尔文温暖的小池塘
是一个合理的生命起源候选者。

当然,
地球上的生命是如何开始的仍然存在争议,

而且很可能永远都是。

但很明显,它很繁荣。

它已经多样化,

而且变得越来越复杂。

最终,它
达到了人类的年龄,

这个物种已经
开始质疑自己的存在

和其他地方生命的存在:

是否有一个宇宙社区
在等待与我们联系,

或者我们就是一切?

这个谜题的线索再次
来自古代岩石记录。

大约在 25 亿年前,

有证据表明细菌
已经开始产生氧气,

就像今天的植物一样。

地质学家
将随后的时期

称为大氧化事件。

这是从
称为带状铁地层的岩石中暗示的,

其中许多可以被观察
为数百米厚的岩石包,这些

岩石包暴露在

穿过西澳大利亚卡里吉尼国家公园

的峡谷中。

游离氧的到来使
我们的星球发生了两个重大变化。

首先,它允许复杂的生命进化。

你看,生命需要氧气
才能变得庞大而复杂。

它还产生了臭氧层
,保护现代生活

免受
太阳 UVB 辐射的有害影响。

因此,具有讽刺意味的是,微生物生命
为复杂生命让路

,从本质上讲,
它放弃了对地球 30 亿年的统治

今天,我们人类挖掘
化石的复杂生命

并将其燃烧作为燃料。

这种做法将
大量二氧化碳排放到大气中

,就像我们的微生物前辈一样,

我们已经开始
对我们的星球做出重大改变。

这些影响
包括在全球变暖中。

不幸的是,这里具有讽刺意味的转折
可能会导致人类的灭亡。

因此,也许
我们没有与别处的生命、别处的智能生命联系起来的原因

是,一旦它进化,

它会迅速自行熄灭。

如果岩石会说话,

我怀疑它们可能会这样说:

地球上的生命是宝贵的。

它是生命与地球之间

微妙而复杂的共同进化四十亿年的产物

,其中人类只代表
了最后一点时间。

您可以将这些信息
用作指南或预测——

或者解释为什么它
在银河系的这一部分显得如此孤独。

但是用它来

了解你

在你称之为家的星球上留下的遗产。

谢谢你。

(掌声)