Is radiation dangerous Matt Anticole

When we hear the word radiation,

it’s tempting to picture huge explosions
and frightening mutations,

but that’s not the full story.

Radiation also applies to rainbows

and a doctor examining an x-ray.

So what is radiation really,

and how much should we worry
about its effects?

The answer begins with understanding
that the word radiation

describes two very different
scientific phenomena:

electromagnetic radiation

and nuclear radiation.

Electromagnetic radiation is pure energy

consisting of interacting electrical
and magnetic waves

oscillating through space.

As these waves oscillate faster,

they scale up in energy.

At the lower end of the spectrum,
there’s radio,

infrared,

and visible light.

At the higher end are ultraviolet,

X-ray,

and gamma rays.

Modern society is shaped by sending
and detecting electromagnetic radiation.

We might download an email to our phone
via radio waves

to open an image of an X-ray print,

which we can see because our screen
emits visible light.

Nuclear radiation, on the other hand,

originates in the atomic nucleus,

where protons repel each other
due to their mutually positive charges.

A phenomenon known as
the strong nuclear force

struggles to overcome this repulsion

and keep the nucleus intact.

However, some combinations
of protons and neutrons,

known as isotopes,

remain unstable,

or radioactive.

They will randomly eject matter
and/or energy,

known as nuclear radiation,

to achieve greater stability.

Nuclear radiation comes from natural
sources, like radon,

a gas which seeps up from the ground.

We also refine naturally occurring
radioactive ores

to fuel nuclear power plants.

Even bananas contain trace amounts
of a radioactive potassium isotope.

So if we live in a world of radiation,

how can we escape its dangerous effects?

To start, not all radiation is hazardous.

Radiation becomes risky when it rips
atoms' electrons away upon impact,

a process that can damage DNA.

This is known as ionizing radiation

because an atom that has lost
or gained electrons is called an ion.

All nuclear radiation is ionizing,

while only the highest energy
electromagnetic radiation is.

That includes gamma rays,

X-rays,

and the high-energy end of ultraviolet.

That’s why as an extra precaution
during X-rays,

doctors shield body parts
they don’t need to examine,

and why beach-goers use sunscreen.

In comparison, cell phones and microwaves
operate at the lower end of the spectrum,

so there is no risk of ionizing radiation
from their use.

The biggest health risk occurs
when lots of ionizing radiation

hits us in a short time period,

also known as an acute exposure.

Acute exposures overwhelm the body’s
natural ability to repair the damage.

This can trigger cancers,

cellular dysfunction,

and potentially even death.

Fortunately, acute exposures are rare,

but we are exposed daily to lower levels
of ionizing radiation

from both natural and man-made sources.

Scientists have a harder time quantifying
these risks.

Your body often repairs damage
from small amounts ionizing radiation,

and if it can’t,

the results of damage may not manifest
for a decade or more.

One way scientists compare ionizing
radiation exposure

is a unit called the sievert.

An acute exposure to one sievert
will probably cause nausea within hours,

and four sieverts could be fatal.

However, our normal daily exposures
are far lower.

The average person receives
6.2 millisieverts of radiation

from all sources annually,

around a third due to radon.

At only five microsieverts each,

you’d need to get more
than 1200 dental X-rays

to rack up your annual dosage.

And remember that banana?

If you could absorb
all the banana’s radiation,

you’d need around 170 a day
to hit your annual dosage.

We live in a world of radiation.

However, much of that radiation
is non-ionizing.

For the remainder that is ionizing,

our exposures are usually low,

and choices like getting your home
tested for radon

and wearing sunscreen

can help reduce
the associated health risks.

Marie Curie,
one of the early radiation pioneers,

summed up the challenge as follows:

“Nothing in life is to be feared,
it is only to be understood.

Now is the time to understand more,
so that we may fear less.”

当我们听到辐射这个词时,

很容易想象巨大的爆炸
和可怕的突变,

但这还不是全部。

辐射也适用于彩虹

和检查 X 射线的医生。

那么辐射到底是什么,

我们应该
担心它的影响有多少呢?

答案首先要理解
辐射这个词

描述了两种截然不同的
科学现象:

电磁辐射

和核辐射。

电磁辐射是

由在空间中振荡的相互作用的电波和磁波组成的纯能量

随着这些波的振荡速度更快,

它们的能量会增加。

在光谱的低端,
有无线电、

红外线

和可见光。

较高端的是紫外线、

X 射线

和伽马射线。

现代社会是通过发送
和检测电磁辐射来塑造的。

我们可能会通过无线电波将一封电子邮件下载到我们的手机中

以打开一张 X 射线照片的图像

,我们可以看到它,因为我们的屏幕
会发出可见光。

另一方面,核辐射

起源于原子核

,质子
由于它们的相互正电荷而相互排斥。

一种
称为强核力的现象

努力克服这种排斥

并保持原子核完整。

然而,
质子和中子的某些组合(

称为同位素)

仍然不稳定

或具有放射性。

它们将随机喷射物质
和/或能量,

称为核辐射,

以实现更大的稳定性。

核辐射来自天然
来源,例如氡,

一种从地下渗出的气体。

我们还提炼天然存在的
放射性矿石,

为核电站提供燃料。

甚至香蕉也含有
微量的放射性钾同位素。

那么,如果我们生活在一个充满辐射的世界中,

我们如何才能摆脱它的危险影响呢?

首先,并非所有辐射都是危险的。

当辐射在撞击时会撕裂原子的电子时,辐射会变得很危险

这一过程可能会损坏 DNA。

这被称为电离辐射,

因为失去
或获得电子的原子称为离子。

所有的核辐射都是电离的,

而只有最高能量的
电磁辐射是电离的。

这包括

伽马射线、X 射线

和紫外线的高能端。

这就是为什么作为
X 光检查期间的额外预防措施,

医生会保护
他们不需要检查的身体部位,

以及为什么海滩游客使用防晒霜。

相比之下,手机和微波
在频谱的低端运行,

因此不存在因使用而产生电离辐射的风险

最大的健康风险发生
在短时间内大量电离辐射

袭击我们时,

也称为急性暴露。

急性暴露压倒了身体
修复损伤的自然能力。

这可能引发癌症、

细胞功能障碍,

甚至可能导致死亡。

幸运的是,急性接触很少见,

但我们每天都接触到

来自自然和人造来源的较低水平的电离辐射。

科学家们很难量化
这些风险。

你的身体经常修复少量电离辐射造成的损伤

,如果不能,

损伤的结果可能
在十年或更长时间内不会显现。

科学家比较电离
辐射暴露的一种方法

是一个称为希沃特的单位。

急性暴露于 1 希沃特
可能会在数小时内引起恶心

,4 希沃特可能是致命的。

但是,我们正常的每日暴露
量要低得多。

普通人每年从所有来源接收
6.2 毫西弗的辐射

,其中

大约三分之一是氡。

每个人只需 5 微西弗,

您就需要进行
1200 多张牙科 X 光检查

才能增加您的年度剂量。

还记得那个香蕉吗?

如果你能吸收
所有香蕉的辐射,

你每天需要大约 170 次
才能达到你的年度剂量。

我们生活在一个充满辐射的世界。

然而,大部分辐射
是非电离的。

对于电离的其余部分,

我们的暴露量通常较低

,选择在家中
进行氡气检测

和涂抹防晒霜等

选择有助于
降低相关的健康风险。

早期辐射先驱之一居里夫人

将这一挑战总结如下:

“生活中没有什么是值得恐惧的,
只有被理解。

现在是了解更多的时候了,
这样我们就可以减少恐惧。”