How do animals see in the dark Anna Stckl

To human eyes, the world at night
is a formless canvas of grey.

Many nocturnal animals, on the other hand,

experience a rich and varied world
bursting with details, shapes, and colors.

What is it, then, that separates moths
from men?

Moths and many other nocturnal animals
see at night

because their eyes are adapted
to compensate for the lack of light.

All eyes, whether nocturnal or not,

depend on photoreceptors in the retina
to detect light particles,

known as photons.

Photoreceptors then report information
about these photons to other cells

in the retina and brain.

The brain sifts through that information
and uses it to build up an image

of the environment the eye perceives.

The brighter the light is,
the more photons hit the eye.

On a sunny day,

upwards of 100 million times
more photons are available to the eye

than on a cloudy, moonless night.

Photons aren’t just less numerous
in darkness,

but they also hit the eye
in a less reliable way.

This means the information
that photoreceptors collect

will vary over time,

as will the quality of the image.

In darkness, trying to detect the sparse
scattering of randomly arriving photons

is too difficult for the eyes
of most daytime animals.

But for night creatures,
it’s just a matter of adaptation.

One of these adaptations is size.

Take the tarsier, whose eyeballs
are each as big as its brain,

giving it the biggest eyes compared
to head size of all mammals.

If humans had the same brain to eye ratio,
our eyes would be the size of grapefruits.

The tarsier’s enlarged orbs haven’t
evolved to make it cuter, however,

but to gather as much light as possible.

Bigger eyes can have larger openings,
called pupils,

and larger lenses,

allowing for more light to be focused
on the receptors.

While tarsiers scan the nocturnal scene
with their enormous peepers,

cats use gleaming eyes to do the same.

Cats' eyes get their shine from
a structure called the tapetum lucidum

that sits behind the photoreceptors.

This structure is made from layers
of mirror-like cells containing crystals

that send incoming light
bouncing back towards the photoreceptors

and out of the eye.

This results in an eerie glow,

and it also gives the photoreceptors
a second chance to detect photons.

In fact, this system has inspired the
artificial cats' eyes we use on our roads.

Toads, on the other hand, have adapted
to take it slow.

They can form an image

even when just a single photon
hits each photoreceptor per second.

They accomplish this with photoreceptors

that are more than 25 times slower
than human ones.

This means toads can collect photons
for up to four seconds,

allowing them to gather many more
than our eyes do

at each visual time interval.

The downside is that this causes toads
to react very slowly

because they’re only receiving
an updated image every four seconds.

Fortunately, they’re accustomed
to targeting sluggish prey.

Meanwhile, the night is also buzzing
with insects,

such as hawk moths,

which can see their favorite flowers
in color, even on a starlit night.

They achieve this by a surprising move -

getting rid of details
in their visual perception.

Information from neighboring
photoreceptors is grouped in their brains,

so the photon catch of each group
is higher

compared to individual receptors.

However, grouping photoreceptors
loses details in the image,

as fine details require a fine grid
of photoreceptors,

each detecting photons from one
small point in space.

The trick is to balance the need
for photons with the loss of detail

to still find their flowers.

Whether eyes are slow, enormous,
shiny, or coarse,

it’s the combination
of these biological adaptations

that gives nocturnal animals their unique
visual powers.

Imagine what it might be like to witness
through their eyes

the world that wakes up
when the Sun goes down.

在人眼看来,夜晚的世界
是一幅无形的灰色画布。

另一方面,许多夜行动物

体验着一个
充满细节、形状和颜色的丰富多样的世界。

那么,飞蛾
与人的区别是什么?

飞蛾和许多其他夜间活动的动物
在夜间能看到东西,

因为它们的眼睛能够
适应光线不足的情况。

所有的眼睛,无论是否在夜间,都

依赖于视网膜
中的光感受器来检测

被称为光子的光粒子。

然后感光器将
有关这些光子的信息报告给

视网膜和大脑中的其他细胞。

大脑筛选这些信息
并使用它来构建

眼睛感知的环境图像。

光线越亮,
击中眼睛的光子就越多。

在阳光明媚的日子里,

眼睛可用的光子

比多云、没有月亮的夜晚多 1 亿倍以上。

光子不仅
在黑暗中数量较少,

而且
以不太可靠的方式击中眼睛。


意味着感光器收集的信息

会随着时间的推移而变化,

图像的质量也会发生变化。

在黑暗中,试图检测
随机到达的光子的稀疏散射

对于大多数白天动物的眼睛来说太难了

但对于夜间生物来说,
这只是适应的问题。

这些适应之一是尺寸。

以眼镜猴为例,它的
眼球和大脑一样大,

与所有哺乳动物的头部相比,它的眼睛最大

如果人类的脑与眼比例相同,
我们的眼睛将有葡萄柚那么大。

然而,眼镜猴扩大的球体并没有
进化到让它变得更可爱,

而是为了收集尽可能多的光。

更大的眼睛可以有更大的开口,
称为瞳孔

和更大的晶状体,

允许更多的光聚焦
在受体上。

当眼镜猴
用它们巨大的窥视器扫描夜间场景时,

猫用闪闪发光的眼睛来做同样的事情。

猫的眼睛从位于感光器后面的
称为绒毡层的结构中获得光泽

这种结构是由
含有晶体的镜面细胞层组成的,这些晶体

将入射光
反射回感光器

并射出眼睛。

这会产生诡异的光芒,

同时也让感光器
有第二次机会检测光子。

事实上,这个系统启发了
我们在道路上使用的人造猫眼。

另一方面,蟾蜍已经适应
了慢慢来。

即使每秒只有一个光子
撞击每个感光器,它们也可以形成图像。

他们使用比人类

慢 25 倍以上的感光器来实现这一点

这意味着蟾蜍可以收集
最多四秒钟的光子,这

使得它们在每个视觉时间间隔内收集的光子数量
比我们的眼睛要多得多

不利的一面是,这会导致
蟾蜍反应非常缓慢,

因为它们
每四秒才收到更新的图像。

幸运的是,它们
习惯于瞄准行动迟缓的猎物。

与此同时,夜晚也充满
了昆虫,

例如天蛾,即使在星光灿烂的夜晚,

它们也能看到自己喜欢的花朵
的颜色。

他们通过一个令人惊讶的举动来实现这一点——

摆脱视觉感知中的细节。

来自相邻
感光器的信息在他们的大脑中分组,

因此与单个受体相比,每组的光子捕获
量更高

然而,将感光器分组
会丢失图像中的细节,

因为精细的细节需要感光器的精细网格
,每个感光器

都从
空间中的一个小点检测光子。

诀窍是平衡
对光子的需求与细节的丢失,

以仍然找到它们的花朵。

无论眼睛是缓慢的、巨大的、
闪亮的还是粗糙的,

正是
这些生物适应性

的结合赋予了夜行动物独特的
视觉能力。

想象一下,
通过他们的眼睛见证太阳下山

时苏醒的世界会是什么样子