How we look kilometers below the Antarctic ice sheet Dustin Schroeder

I’m a radio glaciologist.

That means that I use radar
to study glaciers and ice sheets.

And like most glaciologists right now,

I’m working on the problem of estimating

how much the ice is going to contribute
to sea level rise in the future.

So today, I want to talk to you about

why it’s so hard to put good numbers
on sea level rise,

and why I believe that by changing
the way we think about radar technology

and earth-science education,

we can get much better at it.

When most scientists
talk about sea level rise,

they show a plot like this.

This is produced using ice sheet
and climate models.

On the right, you can see
the range of sea level

predicted by these models
over the next 100 years.

For context, this is current sea level,

and this is the sea level

above which more than 4 million people
could be vulnerable to displacement.

So in terms of planning,

the uncertainty in this plot
is already large.

However, beyond that, this plot comes
with the asterisk and the caveat,

“… unless the West Antarctic
Ice Sheet collapses.”

And in that case, we would be talking
about dramatically higher numbers.

They’d literally be off the chart.

And the reason we should take
that possibility seriously

is that we know from the geologic
history of the Earth

that there were periods in its history

when sea level rose
much more quickly than today.

And right now, we cannot rule out

the possibility of that
happening in the future.

So why can’t we say with confidence

whether or not a significant portion
of a continent-scale ice sheet

will or will not collapse?

Well, in order to do that, we need models

that we know include all of the processes,
conditions and physics

that would be involved
in a collapse like that.

And that’s hard to know,

because those processes
and conditions are taking place

beneath kilometers of ice,

and satellites, like the one
that produced this image,

are blind to observe them.

In fact, we have much more comprehensive
observations of the surface of Mars

than we do of what’s beneath
the Antarctic ice sheet.

And this is even more challenging
in that we need these observations

at a gigantic scale
in both space and time.

In terms of space, this is a continent.

And in the same way that in North America,

the Rocky Mountains, Everglades
and Great Lakes regions are very distinct,

so are the subsurface
regions of Antarctica.

And in terms of time, we now know

that ice sheets not only evolve over
the timescale of millennia and centuries,

but they’re also changing
over the scale of years and days.

So what we want is observations
beneath kilometers of ice

at the scale of a continent,

and we want them all the time.

So how do we do this?

Well, we’re not totally blind
to the subsurface.

I said in the beginning
that I was a radio glaciologist,

and the reason that that’s a thing

is that airborne ice-penetrating radar
is the main tool we have

to see inside of ice sheets.

So most of the data used by my group
is collected by airplanes

like this World War II-era DC-3,

that actually fought
in the Battle of the Bulge.

You can see the antennas
underneath the wing.

These are used to transmit
radar signals down into the ice.

And the echos that come back
contain information

about what’s happening inside
and beneath the ice sheet.

While this is happening,

scientists and engineers
are on the airplane

for eight hours at a stretch,

making sure that the radar’s working.

And I think this is actually
a misconception

about this type of fieldwork,

where people imagine
scientists peering out the window,

contemplating the landscape,
its geologic context

and the fate of the ice sheets.

We actually had a guy from the BBC’s
“Frozen Planet” on one of these flights.

And he spent, like, hours
videotaping us turn knobs.

(Laughter)

And I was actually watching the series
years later with my wife,

and a scene like this came up,
and I commented on how beautiful it was.

And she said, “Weren’t you
on that flight?”

(Laughter)

I said, “Yeah, but I was looking
at a computer screen.”

(Laughter)

So when you think
about this type of fieldwork,

don’t think about images like this.

Think about images like this.

(Laughter)

This is a radargram, which is
a vertical profile through the ice sheet,

kind of like a slice of cake.

The bright layer on the top
is the surface of the ice sheet,

the bright layer on the bottom
is the bedrock of the continent itself,

and the layers in between
are kind of like tree rings,

in that they contain information
about the history of the ice sheet.

And it’s amazing
that this works this well.

The ground-penetrating
radars that are used

to investigate infrastructures of roads
or detect land mines

struggle to get through
a few meters of earth.

And here we’re peering
through three kilometers of ice.

And there are sophisticated, interesting,
electromagnetic reasons for that,

but let’s say for now that ice
is basically the perfect target for radar,

and radar is basically
the perfect tool to study ice sheets.

These are the flight lines

of most of the modern airborne
radar-sounding profiles

collected over Antarctica.

This is the result
of heroic efforts over decades

by teams from a variety of countries
and international collaborations.

And when you put those together,
you get an image like this,

which is what the continent
of Antarctica would look like

without all the ice on top.

And you can really see the diversity
of the continent in an image like this.

The red features
are volcanoes or mountains;

the areas that are blue
would be open ocean

if the ice sheet was removed.

This is that giant spatial scale.

However, all of this
that took decades to produce

is just one snapshot of the subsurface.

It does not give us any indication
of how the ice sheet is changing in time.

Now, we’re working on that,
because it turns out

that the very first radar observations
of Antarctica were collected

using 35 millimeter optical film.

And there were thousands
of reels of this film

in the archives of the museum
of the Scott Polar Research Institute

at the University of Cambridge.

So last summer, I took
a state-of-the-art film scanner

that was developed for digitizing
Hollywood films and remastering them,

and two art historians,

and we went over to England,
put on some gloves

and archived and digitized
all of that film.

So that produced two million
high-resolution images

that my group is now working
on analyzing and processing

for comparing with contemporary
conditions in the ice sheet.

And, actually, that scanner –
I found out about it

from an archivist at the Academy
of Motion Picture Arts and Sciences.

So I’d like to thank the Academy –

(Laughter)

for making this possible.

(Laughter)

And as amazing as it is

that we can look at what was happening
under the ice sheet 50 years ago,

this is still just one more snapshot.

It doesn’t give us observations

of the variation at the annual
or seasonal scale,

that we know matters.

There’s some progress here, too.

There are these recent ground-based
radar systems that stay in one spot.

So you take these radars
and put them on the ice sheet

and you bury a cache of car batteries.

And you leave them out there
for months or years at a time,

and they send a pulse down
into the ice sheet

every so many minutes or hours.

So this gives you
continuous observation in time –

but at one spot.

So if you compare that imaging to the 2-D
pictures provided by the airplane,

this is just one vertical line.

And this is pretty much
where we are as a field right now.

We can choose between
good spatial coverage

with airborne radar sounding

and good temporal coverage in one spot
with ground-based sounding.

But neither gives us what we really want:

both at the same time.

And if we’re going to do that,

we’re going to need totally new ways
of observing the ice sheet.

And ideally, those should be
extremely low-cost

so that we can take lots
of measurements from lots of sensors.

Well, for existing radar systems,

the biggest driver of cost
is the power required

to transmit the radar signal itself.

So it’d be great if we were able
to use existing radio systems

or radio signals
that are in the environment.

And fortunately, the entire field
of radio astronomy

is built on the fact that there
are bright radio signals in the sky.

And a really bright one is our sun.

So, actually, one of the most exciting
things my group is doing right now

is trying to use the radio emissions
from the sun as a type of radar signal.

This is one of our field tests at Big Sur.

That PVC pipe ziggurat is an antenna stand
some undergrads in my lab built.

And the idea here
is that we stay out at Big Sur,

and we watch the sunset
in radio frequencies,

and we try and detect the reflection
of the sun off the surface of the ocean.

Now, I know you’re thinking,
“There are no glaciers at Big Sur.”

(Laughter)

And that’s true.

(Laughter)

But it turns out that detecting
the reflection of the sun

off the surface of the ocean

and detecting the reflection
off the bottom of an ice sheet

are extremely geophysically similar.

And if this works,

we should be able to apply the same
measurement principle in Antarctica.

And this is not
as far-fetched as it seems.

The seismic industry has gone through
a similar technique-development exercise,

where they were able to move
from detonating dynamite as a source,

to using ambient seismic noise
in the environment.

And defense radars use TV signals
and radio signals all the time,

so they don’t have to transmit
a signal of radar

and give away their position.

So what I’m saying is,
this might really work.

And if it does, we’re going to need
extremely low-cost sensors

so we can deploy networks of hundreds
or thousands of these on an ice sheet

to do imaging.

And that’s where the technological stars
have really aligned to help us.

Those earlier radar systems I talked about

were developed by experienced
engineers over the course of years

at national facilities

with expensive specialized equipment.

But the recent developments
in software-defined radio,

rapid fabrication and the maker movement,

make it so that it’s possible
for a team of teenagers

working in my lab over the course
of a handful of months

to build a prototype radar.

OK, they’re not any teenagers,
they’re Stanford undergrads,

but the point holds –

(Laughter)

that these enabling technologies
are letting us break down the barrier

between engineers who build instruments
and scientists that use them.

And by teaching engineering students
to think like earth scientists

and earth-science students
who can think like engineers,

my lab is building an environment in which
we can build custom radar sensors

for each problem at hand,

that are optimized for low cost
and high performance

for that problem.

And that’s going to totally change
the way we observe ice sheets.

Look, the sea level problem and the role
of the cryosphere in sea level rise

is extremely important

and will affect the entire world.

But that is not why I work on it.

I work on it for the opportunity
to teach and mentor

extremely brilliant students,

because I deeply believe
that teams of hypertalented,

hyperdriven, hyperpassionate young people

can solve most of the challenges
facing the world,

and that providing the observations
required to estimate sea level rise

is just one of the many such problems
they can and will solve.

Thank you.

(Applause)

我是一名无线电冰川学家。

这意味着我使用雷达
来研究冰川和冰盖。

和现在的大多数冰川学家一样,

我正在研究估计

未来冰
会对海平面上升造成多大影响的问题。

所以今天,我想和你谈谈

为什么很难
在海平面上升上给出好的数字,

以及为什么我相信通过
改变我们对雷达技术

和地球科学教育的看法,

我们可以在这方面做得更好 .

当大多数科学家
谈论海平面上升时,

他们会展示这样的情节。

这是使用冰盖
和气候模型生成的。

在右侧,您可以看到

这些模型预测
的未来 100 年的海平面范围。

就上下文而言,这是当前的

海平面,超过 400 万人
可能容易流离失所。

所以在规划方面,

这个地块的不确定性
已经很大了。

然而,除此之外,这个情节
带有星号和警告,

“……除非南极西部
冰盖坍塌。”

在这种情况下,我们将
谈论更高的数字。

他们真的会不在图表上。

我们应该
认真对待这种可能性的原因

是,我们从地球的地质历史中知道,

在它的历史

上,海平面上升
的速度比今天快得多。

现在,我们不能

排除这种
情况在未来发生的可能性。

那么,为什么我们不能自信地说出

大陆规模的冰盖的很大一部分

是否会崩塌呢?

好吧,为了做到这一点,我们需要

我们知道的模型,包括所有

可能涉及
到这样的坍塌的过程、条件和物理。

这很难知道,

因为这些过程
和条件发生

在数公里的冰层之下,

而卫星,就像
产生这张照片的卫星一样

,无法观察到它们。

事实上,我们
对火星表面的观察


对南极冰盖下方的观察要全面得多。

这更具挑战
性,因为我们需要在空间和时间

上以巨大的规模
进行这些观察。

就空间而言,这是一个大陆。

就像在北美

,落基山脉、大沼泽地
和五大湖地区非常不同,南极洲

的地下
区域也是如此。

就时间而言,我们现在

知道冰盖不仅在
数千年和数百年的时间尺度上演变,

而且还在年复一年
的尺度上发生变化。

因此,我们想要的是

在大陆尺度的数公里冰层下进行观测,

而且我们一直都想要它们。

那么我们该怎么做呢?

好吧,我们对地下并不完全视而不见

我一开始
说我是一名无线电冰川学家

,之所以这样,

是因为机载探冰雷达
是我们

必须看到冰盖内部的主要工具。

所以我小组使用的大部分数据都是由

二战时期的 DC-3 等飞机收集的,

它实际上
是在突出部之战中战斗的。

您可以看到
机翼下方的天线。

这些用于将
雷达信号向下传输到冰中。

返回的回声包含

有关冰盖内部和下方发生的情况的信息

在这种情况下,

科学家和
工程师在飞机

上连续八小时,

确保雷达正常工作。

我认为这实际上

对这种类型的实地考察的误解,

人们想象
科学家凝视窗外,

思考景观
、地质背景

和冰盖的命运。

我们实际上有一个来自 BBC 的
“冰冻星球”的人在其中一个航班上。

他花了,就像,几个小时
录像我们转动旋钮。

(笑声)

实际上
几年后我和我的妻子正在看这个系列,

然后出现了这样的场景
,我评论它是多么美丽。

她说:“你不是
在那个航班上吗?”

(笑声)

我说:“是的,但我在
看电脑屏幕。”

(笑声)

所以当你
考虑这种类型的田野调查时,

不要考虑这样的图像。

想想这样的图像。

(笑声)

这是一个雷达图,它是
穿过冰盖的垂直剖面,

有点像一块蛋糕。

顶部的亮层
是冰盖的表面,

底部的亮层
是大陆本身的基岩

,中间的层
有点像年轮

,因为它们包含
有关冰盖历史的信息 冰盖。

令人惊讶的
是,它的效果如此之好。

用于调查道路基础设施
或探测地雷的探地雷达

难以
穿过几米深的地球。

在这里,我们
透过三公里的冰层凝视。

这有复杂的、有趣的、
电磁的原因,

但现在让我们说冰
基本上是雷达的完美目标,

而雷达基本上
是研究冰盖的完美工具。

这些是在南极洲收集

的大多数现代机载
雷达探测剖面的飞行路线

这是

来自不同国家
和国际合作的团队数十年来英勇努力的结果。

当你把它们放在一起时,
你会得到这样的图像,

这就是南极洲大陆

顶部没有冰的样子。

你可以
在这样的图像中真正看到非洲大陆的多样性。

红色的特征
是火山或山脉; 如果冰盖被移除

,蓝色的区域
将是开阔的海洋

这就是那巨大的空间尺度。

然而,所有
这些花了几十年时间才产生

的东西只是地下的一个快照。

它没有给我们任何
关于冰盖如何随时间变化的迹象。

现在,我们正在努力,
因为事实证明

,南极洲的第一次雷达观测

使用 35 毫米光学薄膜收集的。

剑桥大学斯科特极地研究所博物馆的档案馆里
有这部电影的数千卷

所以去年夏天,我带
了一台最先进的胶片扫描仪

,它是为数字化
好莱坞电影并重新制作它们而开发的,

还有两位艺术史学家

,我们去了英国,
戴上手套

,将
所有这些都存档和数字化 电影。

这样就产生了 200 万
张高分辨率图像

,我的小组现在
正在分析和处理这些图像,

以便与
冰盖中的当代条件进行比较。

而且,实际上,那个扫描仪——
我是


电影艺术与科学学院的档案管理员那里得知的。

所以我要感谢学院——

(笑声)

让这成为可能。

(笑声)

尽管我们可以看到
50 年前在冰盖下发生的事情,

但这仍然只是一张快照。

它没有让我们观察

到年度
或季节尺度的变化

,我们知道这很重要。

这里也有一些进展。

这些最近的陆
基雷达系统都停留在一个地方。

所以你
把这些雷达放在冰盖上,

然后埋掉一堆汽车电池。

你一次把它们放在
那里几个月或几年

,它们每隔几分钟或几小时就会向冰盖发送一个脉冲

所以这可以让你
及时连续观察——

但在一个地方。

因此,如果您将该图像
与飞机提供的二维图片进行比较,

这只是一条垂直线。

这几乎
就是我们现在作为一个领域的位置。

我们可以在

机载雷达探测

的良好空间覆盖和地面探测在一个地点的良好时间覆盖之间进行选择

但两者都没有给我们我们真正想要的东西:

两者同时。

如果我们要做到这一点,

我们将需要全新的方式
来观察冰盖。

理想情况下,这些应该是
极低成本的,

这样我们就可以
从大量传感器中进行大量测量。

那么,对于现有的雷达系统,

成本的最大驱动因素

传输雷达信号本身所需的功率。

因此,如果我们
能够使用现有的无线电系统


环境中的无线电信号,那就太好了。

幸运的是,整个
射电天文学领域

都是建立
在天空中有明亮的无线电信号的事实之上的。

一个真正明亮的是我们的太阳。

所以,实际上,
我的团队目前正在做的最令人兴奋的事情之一

就是尝试将太阳的无线电发射
用作一种雷达信号。

这是我们在 Big Sur 的现场测试之一。

那个 PVC 管 ziggurat
是我实验室的一些本科生建造的天线支架。

这里的想法
是我们呆在大苏尔

,我们
用无线电频率观看日落

,我们尝试检测
太阳在海洋表面的反射。

现在,我知道你在想,
“大苏尔没有冰川。”

(笑声)

这是真的。

(笑声)

但事实证明,探测

海洋表面的太阳

反射和探测
冰盖底部的反射在

地球物理上非常相似。

如果这

可行,我们应该能够在南极洲应用相同的
测量原理。

而这并不
像看起来那么牵强。

地震行业也经历
了类似的技术开发活动

,他们能够
从引爆炸药作为来源,

转变为使用环境中的环境地震噪声

并且防御雷达一直使用电视信号
和无线电信号,

因此它们不必
发射雷达信号

并放弃其位置。

所以我要说的是,
这可能真的有效。

如果确实如此,我们将需要
成本极低的传感器,

以便我们可以
在冰盖上部署数百或数千个传感器网络

来进行成像。

这就是技术明星
们真正齐心协力帮助我们的地方。

我谈到的那些早期雷达系统

是由经验丰富的
工程师多年来

在国家设施中

使用昂贵的专用设备开发的。

但是
,软件定义无线电、

快速制造和创客运动的最新发展,

使得

在我的实验室工作
的一个青少年团队可以在几个月的时间

里建造一个原型雷达。

好吧,他们不是青少年,
他们是斯坦福大学的本科生,

但重点是——

(笑声)

这些使能
技术让我们打破了

制造仪器的工程师
和使用仪器的科学家之间的障碍。

通过教导工程专业的
学生像地球科学家一样思考,

以及
像工程师一样思考的地球科学专业的学生,

我的实验室正在构建一个环境,在这个环境中,
我们可以

为手头的每个问题构建定制的雷达传感器,

这些传感器针对低成本和高性能进行了优化

对于那个问题。

这将彻底
改变我们观察冰盖的方式。

看,海平面问题和
冰冻圈在海平面上升

中的作用极其重要

,将影响整个世界。

但这不是我工作的原因。

我致力于有
机会教授和指导

非常优秀的学生,

因为我
深信由才华横溢

、积极进取、充满激情的年轻人组成的团队

可以解决
世界面临的大部分挑战,


提供估计海平面上升所需的观察结果

只是
他们能够并且将要解决的众多此类问题之一。

谢谢你。

(掌声)