How were using AI to discover new antibiotics Jim Collins

So how are we going to beat
this novel coronavirus?

By using our best tools:

our science and our technology.

In my lab, we’re using
the tools of artificial intelligence

and synthetic biology

to speed up the fight
against this pandemic.

Our work was originally designed

to tackle the antibiotic
resistance crisis.

Our project seeks to harness
the power of machine learning

to replenish our antibiotic arsenal

and avoid a globally devastating
postantibiotic era.

Importantly, the same
technology can be used

to search for antiviral compounds

that could help us fight
the current pandemic.

Machine learning is turning
the traditional model of drug discovery

on its head.

With this approach,

instead of painstakingly testing
thousands of existing molecules

one by one in a lab

for their effectiveness,

we can train a computer
to explore the exponentially larger space

of essentially all possible molecules
that could be synthesized,

and thus, instead of looking
for a needle in a haystack,

we can use the giant magnet
of computing power

to find many needles
in multiple haystacks simultaneously.

We’ve already had some early success.

Recently, we used machine learning
to discover new antibiotics

that can help us fight off
the bacterial infections

that can occur alongside
SARS-CoV-2 infections.

Two months ago, TED’s Audacious Project
approved funding for us

to massively scale up our work

with the goal of discovering
seven new classes of antibiotics

against seven of the world’s
deadly bacterial pathogens

over the next seven years.

For context:

the number of new class of antibiotics

that have been discovered
over the last three decades is zero.

While the quest for new antibiotics
is for our medium-term future,

the novel coronavirus poses
an immediate deadly threat,

and I’m excited to share that we think
we can use the same technology

to search for therapeutics
to fight this virus.

So how are we going to do it?

Well, we’re creating
a compound training library

and with collaborators applying these
molecules to SARS-CoV-2-infected cells

to see which of them exhibit
effective activity.

These data will be use to train
a machine learning model

that will be applied to an in silico
library of over a billion molecules

to search for potential
novel antiviral compounds.

We will synthesize and test
the top predictions

and advance the most promising
candidates into the clinic.

Sound too good to be true?

Well, it shouldn’t.

The Antibiotics AI Project is founded
on our proof of concept research

that led to the discovery
of a novel broad-spectrum antibiotic

called halicin.

Halicin has potent antibacterial activity

against almost all antibiotic-resistant
bacterial pathogens,

including untreatable
panresistant infections.

Importantly, in contrast
to current antibiotics,

the frequency at which bacteria
develop resistance against halicin

is remarkably low.

We tested the ability of bacteria
to evolve resistance against halicin

as well as Cipro in the lab.

In the case of Cipro,

after just one day, we saw resistance.

In the case of halicin,

after one day,
we didn’t see any resistance.

Amazingly, after even 30 days,

we didn’t see any resistance
against halicin.

In this pilot project, we first tested
roughly 2,500 compounds against E. coli.

This training set included
known antibiotics,

such as Cipro and penicillin,

as well as many drugs
that are not antibiotics.

These data we used to train a model

to learn molecular features
associated with antibacterial activity.

We then applied this model
to a drug-repurposing library

consisting of several thousand molecules

and asked the model to identify molecules

that are predicted
to have antibacterial properties

but don’t look like existing antibiotics.

Interestingly, only one molecule
in that library fit these criteria,

and that molecule
turned out to be halicin.

Given that halicin does not look
like any existing antibiotic,

it would have been impossible for a human,
including an antibiotic expert,

to identify halicin in this manner.

Imagine now what we could do
with this technology

against SARS-CoV-2.

And that’s not all.

We’re also using the tools
of synthetic biology,

tinkering with DNA
and other cellular machinery,

to serve human purposes
like combating COVID-19,

and of note, we are working
to develop a protective mask

that can also serve
as a rapid diagnostic test.

So how does that work?

Well, we recently showed

that you can take the cellular
machinery out of a living cell

and freeze-dry it along with
RNA sensors onto paper

in order to create low-cost
diagnostics for Ebola and Zika.

The sensors are activated when
they’re rehydrated by a patient sample

that could consist of blood
or saliva, for example.

It turns out, this technology
is not limited to paper

and can be applied
to other materials, including cloth.

For the COVID-19 pandemic,

we’re designing RNA sensors
to detect the virus

and freeze-drying these
along with the needed cellular machinery

into the fabric of a face mask,

where the simple act of breathing,

along with the water vapor
that comes with it,

can activate the test.

Thus, if a patient is infected
with SARS-CoV-2,

the mask will produce
a fluorescent signal

that could be detected by a simple,
inexpensive handheld device.

In one or two hours, a patient
could thus be diagnosed

safely, remotely and accurately.

We’re also using synthetic biology

to design a candidate
vaccine for COVID-19.

We are repurposing the BCG vaccine,

which had been used against TB
for almost a century.

It’s a live attenuated vaccine,

and we’re engineering it
to express SARS-CoV-2 antigens,

which should trigger the production
of protective antibodies

by the immune system.

Importantly, BCG
is massively scalable

and has a safety profile that’s among
the best of any reported vaccine.

With the tools of synthetic biology
and artificial intelligence,

we can win the fight
against this novel coronavirus.

This work is in its very early stages,
but the promise is real.

Science and technology
can give us an important advantage

in the battle of human wits
versus the genes of superbugs,

a battle we can win.

Thank you.

那么,我们将如何战胜
这种新型冠状病毒呢?

通过使用我们最好的工具:

我们的科学和技术。

在我的实验室里,我们正在使用
人工智能

和合成生物学的工具

来加速
对抗这种流行病。

我们的工作最初

旨在解决抗生素
耐药性危机。

我们的项目旨在
利用机器学习的力量

来补充我们的抗生素库

并避免全球毁灭性的
后抗生素时代。

重要的是,同样的
技术可以

用来寻找

可以帮助我们
对抗当前流行病的抗病毒化合物。

机器学习正在颠覆
传统的药物发现模式

使用这种方法,

我们可以训练计算机
来探索

几乎所有
可以合成的可能分子的指数级更大空间,

而不是在实验室中煞费苦心地测试数千个现有分子的有效性,因此,而不是
寻找 大海捞针,

我们可以利用计算能力的巨磁铁

同时在多个大海捞针中找到许多针。

我们已经取得了一些早期的成功。

最近,我们使用机器
学习发现了新的抗生素

,可以帮助我们抵抗

可能与
SARS-CoV-2 感染一起发生的细菌感染。

两个月前,TED 的 Audacious Project
批准资助

我们大规模扩展我们的工作

,目标是在未来七年内发现
七种新的抗生素,

对抗世界上七种
致命的细菌病原体

就上下文而言:

过去三年中发现的新型抗生素的数量为零。

虽然寻找新抗生素
是为了我们的中期未来

,但新型冠状病毒构成
了直接的致命威胁

,我很高兴与大家分享我们认为
我们可以使用相同的技术

来寻找治疗方法
来对抗这种病毒。

那么我们要怎么做呢?

好吧,我们正在创建
一个复合训练库,

并与合作者将这些
分子应用于感染 SARS-CoV-2 的细胞,

以查看它们中的哪些表现出
有效的活性。

这些数据将用于
训练机器学习模型

,该模型将应用于
超过十亿分子的计算机库,

以寻找潜在的
新型抗病毒化合物。

我们将综合和
测试顶级预测

,并将最有希望的
候选者推向临床。

听起来好得令人难以置信?

嗯,不应该。

抗生素 AI 项目建立
在我们的概念验证研究的基础上

,该研究导致发现
了一种名为 halicin 的新型广谱抗生素

Halicin

对几乎所有耐抗生素的
细菌病原体具有强大的抗菌活性,

包括无法治愈的
泛耐药感染。

重要的是,
与目前的抗生素相比

,细菌
对halicin产生抗药性的

频率非常低。

我们在实验室中测试了细菌

halicin 和 Cipro 产生抗性的能力。

在 Cipro 的案例中,

仅仅一天之后,我们就看到了阻力。

在halicin的情况下,

一天后,
我们没有看到任何阻力。

令人惊讶的是,即使 30 天后,

我们也没有发现任何
对 halicin 的抗药性。

在这个试点项目中,我们首先测试了
大约 2,500 种针对大肠杆菌的化合物。

该训练集包括
已知的抗生素,

例如环丙罗和青霉素,

以及
许多不是抗生素的药物。

我们用这些数据训练模型

来学习
与抗菌活性相关的分子特征。

然后,我们将该模型应用于

由数千个分子组成的药物再利用库,

并要求该模型识别

预计具有抗菌特性

但看起来不像现有抗生素的分子。

有趣的是,该文库中只有一个分子
符合这些标准,

而该分子
被证明是 halicin。

鉴于 halicin 看起来
不像任何现有的抗生素,

人类,
包括抗生素专家,

不可能以这种方式识别 halicin。

现在想象一下,我们可以
用这项技术

对 SARS-CoV-2 做些什么。

这还不是全部。

我们还使用
合成生物学工具,

修补 DNA
和其他细胞机器,

以服务于人类目的,
例如对抗 COVID-19

,值得注意的是,我们正在
努力开发一种防护面罩

,它也可以
用作快速诊断测试 .

那么这是如何工作的呢?

好吧,我们最近展示

了您可以将细胞
机器从活细胞中取出,

并将其与 RNA 传感器一起冷冻干燥
到纸上

,以便
为埃博拉病毒和寨卡病毒创建低成本的诊断方法。

例如,当传感器被

可能由血液
或唾液组成的患者样本补水时,传感器就会被激活。

事实证明,这项
技术不仅限于纸张

,还可以
应用于包括布料在内的其他材料。

对于 COVID-19 大流行,

我们正在设计 RNA 传感器
来检测病毒,

并将这些传感器
连同所需的细胞机器一起冷冻干燥

到面罩的织物中

,简单的呼吸动作

以及随之而来的水蒸气
有了它,

就可以激活测试。

因此,如果患者感染
了 SARS-CoV-2

,面罩会
产生荧光信号

,可以通过简单、
廉价的手持设备检测到。 因此,可以

在一两个小时内

安全、远程和准确地诊断出患者。

我们还使用合成生物学

来设计
COVID-19 的候选疫苗。

我们正在重新利用近一个世纪

以来一直用于治疗结核病的卡介苗疫苗

这是一种减毒活疫苗

,我们正在对其进行工程改造
以表达 SARS-CoV-2 抗原,

这应该会触发免疫系统
产生保护性

抗体。

重要的是,BCG
具有大规模的可扩展性

,并且其安全性在
所有已报道的疫苗中名列前茅。

借助合成生物学
和人工智能的工具,

我们可以
战胜这种新型冠状病毒。

这项工作处于非常早期的阶段,
但承诺是真实的。

科学和技术
可以让我们

在人类智慧
与超级细菌基因

的战斗中获得重要优势,我们可以赢得这场战斗。

谢谢你。