Maryn McKenna What do we do when antibiotics dont work any more

This is my great uncle,

my father’s father’s younger brother.

His name was Joe McKenna.

He was a young husband
and a semi-pro basketball player

and a fireman in New York City.

Family history says
he loved being a fireman,

and so in 1938, on one of his days off,

he elected to hang out at the firehouse.

To make himself useful that day,
he started polishing all the brass,

the railings on the fire truck,
the fittings on the walls,

and one of the fire hose nozzles,

a giant, heavy piece of metal,

toppled off a shelf and hit him.

A few days later,
his shoulder started to hurt.

Two days after that, he spiked a fever.

The fever climbed and climbed.

His wife was taking care of him,

but nothing she did made a difference,
and when they got the local doctor in,

nothing he did mattered either.

They flagged down a cab
and took him to the hospital.

The nurses there recognized right away
that he had an infection,

what at the time they would
have called “blood poisoning,”

and though they probably didn’t say it,

they would have known right away

that there was nothing they could do.

There was nothing they could do
because the things we use now

to cure infections didn’t exist yet.

The first test of penicillin,
the first antibiotic,

was three years in the future.

People who got infections
either recovered, if they were lucky,

or they died.

My great uncle was not lucky.

He was in the hospital for a week,
shaking with chills,

dehydrated and delirious,

sinking into a coma as his organs failed.

His condition grew so desperate

that the people from his firehouse
lined up to give him transfusions

hoping to dilute the infection
surging through his blood.

Nothing worked. He died.

He was 30 years old.

If you look back through history,

most people died the way
my great uncle died.

Most people didn’t die
of cancer or heart disease,

the lifestyle diseases that afflict us
in the West today.

They didn’t die of those diseases
because they didn’t live long enough

to develop them.

They died of injuries –

being gored by an ox,

shot on a battlefield,

crushed in one of the new factories
of the Industrial Revolution –

and most of the time from infection,

which finished what those injuries began.

All of that changed
when antibiotics arrived.

Suddenly, infections that had
been a death sentence

became something
you recovered from in days.

It seemed like a miracle,

and ever since, we have been living inside
the golden epoch of the miracle drugs.

And now, we are coming to an end of it.

My great uncle died in the last days
of the pre-antibiotic era.

We stand today on the threshold
of the post-antibiotic era,

in the earliest days of a time
when simple infections

such as the one Joe had
will kill people once again.

In fact, they already are.

People are dying of infections again
because of a phenomenon

called antibiotic resistance.

Briefly, it works like this.

Bacteria compete against each other
for resources, for food,

by manufacturing lethal compounds
that they direct against each other.

Other bacteria, to protect themselves,

evolve defenses against
that chemical attack.

When we first made antibiotics,

we took those compounds into the lab
and made our own versions of them,

and bacteria responded to our attack
the way they always had.

Here is what happened next:

Penicillin was distributed in 1943,

and widespread penicillin resistance
arrived by 1945.

Vancomycin arrived in 1972,

vancomycin resistance in 1988.

Imipenem in 1985,

and resistance to in 1998.

Daptomycin, one of
the most recent drugs, in 2003,

and resistance to it
just a year later in 2004.

For 70 years, we played
a game of leapfrog –

our drug and their resistance,

and then another drug,
and then resistance again –

and now the game is ending.

Bacteria develop resistance so quickly
that pharmaceutical companies

have decided making antibiotics
is not in their best interest,

so there are infections
moving across the world

for which, out of the more
than 100 antibiotics

available on the market,

two drugs might work with side effects,

or one drug,

or none.

This is what that looks like.

In 2000, the Centers for Disease
Control and Prevention, the CDC,

identified a single case

in a hospital in North Carolina

of an infection resistant
to all but two drugs.

Today, that infection, known as KPC,

has spread to every state but three,

and to South America, Europe

and the Middle East.

In 2008, doctors in Sweden

diagnosed a man from India
with a different infection

resistant to all but one drug that time.

The gene that creates that resistance,

known as NDM, has now spread
from India into China, Asia, Africa,

Europe and Canada, and the United States.

It would be natural to hope

that these infections
are extraordinary cases,

but in fact,

in the United States and Europe,

50,000 people a year

die of infections which no drugs can help.

A project chartered
by the British government

known as the Review
on Antimicrobial Resistance

estimates that the worldwide toll
right now is 700,000 deaths a year.

That is a lot of deaths,

and yet, the chances are good
that you don’t feel at risk,

that you imagine these people
were hospital patients

in intensive care units

or nursing home residents
near the ends of their lives,

people whose infections
are remote from us,

in situations we can’t identify with.

What you didn’t think about,
none of us do,

is that antibiotics support
almost all of modern life.

If we lost antibiotics,

here’s what else we’d lose:

First, any protection for people
with weakened immune systems –

cancer patients, AIDS patients,

transplant recipients, premature babies.

Next, any treatment that installs
foreign objects in the body:

stents for stroke, pumps for diabetes,

dialysis, joint replacements.

How many athletic baby boomers
need new hips and knees?

A recent study estimates
that without antibiotics,

one out of ever six would die.

Next, we’d probably lose surgery.

Many operations are preceded

by prophylactic doses of antibiotics.

Without that protection,

we’d lose the ability to open
the hidden spaces of the body.

So no heart operations,

no prostate biopsies,

no Cesarean sections.

We’d have to learn to fear infections
that now seem minor.

Strep throat used to cause heart failure.

Skin infections led to amputations.

Giving birth killed,
in the cleanest hospitals,

almost one woman out of every 100.

Pneumonia took three children
out of every 10.

More than anything else,

we’d lose the confident way
we live our everyday lives.

If you knew that any injury
could kill you,

would you ride a motorcycle,

bomb down a ski slope,

climb a ladder to hang
your Christmas lights,

let your kid slide into home plate?

After all, the first person
to receive penicillin,

a British policeman named
Albert Alexander,

who was so ravaged by infection
that his scalp oozed pus

and doctors had to take out an eye,

was infected by doing
something very simple.

He walked into his garden
and scratched his face on a thorn.

That British project I mentioned
which estimates that the worldwide toll

right now is 700,000 deaths a year

also predicts that if we can’t
get this under control by 2050,

not long, the worldwide toll
will be 10 million deaths a year.

How did we get to this point

where what we have to look forward to

is those terrifying numbers?

The difficult answer is,
we did it to ourselves.

Resistance is an inevitable
biological process,

but we bear the responsibility
for accelerating it.

We did this by squandering antibiotics

with a heedlessness
that now seems shocking.

Penicillin was sold
over the counter until the 1950s.

In much of the developing world,
most antibiotics still are.

In the United States, 50 percent

of the antibiotics given
in hospitals are unnecessary.

Forty-five percent of the prescriptions
written in doctor’s offices

are for conditions
that antibiotics cannot help.

And that’s just in healthcare.

On much of the planet, most meat animals
get antibiotics every day of their lives,

not to cure illnesses,

but to fatten them up
and to protect them against

the factory farm conditions
they are raised in.

In the United States, possibly 80 percent

of the antibiotics sold every year
go to farm animals, not to humans,

creating resistant bacteria
that move off the farm

in water, in dust,

in the meat the animals become.

Aquaculture depends on antibiotics too,

particularly in Asia,

and fruit growing relies on antibiotics

to protect apples, pears,
citrus, against disease.

And because bacteria can pass
their DNA to each other

like a traveler handing off
a suitcase at an airport,

once we have encouraged
that resistance into existence,

there is no knowing where it will spread.

This was predictable.

In fact, it was predicted

by Alexander Fleming,
the man who discovered penicillin.

He was given the Nobel Prize
in 1945 in recognition,

and in an interview shortly after,
this is what he said:

“The thoughtless person playing
with penicillin treatment

is morally responsible
for the death of a man

who succumbs to infection

with a pencillin-resistant organism.”

He added, “I hope this evil
can be averted.”

Can we avert it?

There are companies working
on novel antibiotics,

things the superbugs
have never seen before.

We need those new drugs badly,

and we need incentives:

discovery grants, extended patents,

prizes, to lure other companies
into making antibiotics again.

But that probably won’t be enough.

Here’s why: Evolution always wins.

Bacteria birth a new generation
every 20 minutes.

It takes pharmaceutical chemistry
10 years to derive a new drug.

Every time we use an antibiotic,

we give the bacteria billions of chances

to crack the codes

of the defenses we’ve constructed.

There has never yet been a drug

they could not defeat.

This is asymmetric warfare,

but we can change the outcome.

We could build systems to harvest data
to tell us automatically and specifically

how antibiotics are being used.

We could build gatekeeping
into drug order systems

so that every prescription
gets a second look.

We could require agriculture
to give up antibiotic use.

We could build surveillance systems

to tell us where resistance
is emerging next.

Those are the tech solutions.

They probably aren’t enough either,

unless we help.

Antibiotic resistance is a habit.

We all know how hard it is
to change a habit.

But as a society,
we’ve done that in the past.

People used to toss litter
into the streets,

used to not wear seatbelts,

used to smoke inside public buildings.

We don’t do those things anymore.

We don’t trash the environment

or court devastating accidents

or expose others
to the possibility of cancer,

because we decided those things
were expensive,

destructive, not in our best interest.

We changed social norms.

We could change social norms
around antibiotic use too.

I know that the scale
of antibiotic resistance

seems overwhelming,

but if you’ve ever bought
a fluorescent lightbulb

because you were concerned
about climate change,

or read the label on a box of crackers

because you think about
the deforestation from palm oil,

you already know what it feels like

to take a tiny step to address
an overwhelming problem.

We could take those kinds of steps
for antibiotic use too.

We could forgo giving an antibiotic
if we’re not sure it’s the right one.

We could stop insisting on a prescription
for our kid’s ear infection

before we’re sure what caused it.

We could ask every restaurant,

every supermarket,

where their meat comes from.

We could promise each other

never again to buy chicken
or shrimp or fruit

raised with routine antibiotic use,

and if we did those things,

we could slow down the arrival
of the post-antibiotic world.

But we have to do it soon.

Penicillin began
the antibiotic era in 1943.

In just 70 years, we walked ourselves
up to the edge of disaster.

We won’t get 70 years

to find our way back out again.

Thank you very much.

(Applause)

这是我的叔叔,

我父亲的父亲的弟弟。

他的名字是乔·麦肯纳。

他是一位年轻的丈夫
,是一名半职业篮球运动员

,也是纽约市的一名消防员。

家族史表明
他喜欢当一名消防员

,因此在 1938 年的某个休息日,

他选择在消防站闲逛。

为了让自己在那天有用,
他开始打磨所有的黄铜、

消防车上的栏杆、
墙上的配件,

还有一个消防水带喷头,

一个巨大而沉重的金属,

从架子上掉下来打了他 .

几天后,
他的肩膀开始疼痛。

两天后,他发烧了。

热度越来越高。

他的妻子在照顾他,

但她所做的一切都没有改变
,当他们让当地的医生进来时,

他所做的一切也无关紧要。

他们拦下了一辆出租车
,把他送到了医院。

那里的护士立刻
意识到他感染

了,当时他们
会称之为“血液中毒”

,虽然他们可能没有说出来,

但他们

马上就会知道他们无能为力。

他们无能为力,
因为我们现在

用来治疗感染的东西还不存在。

第一次试验青霉素
,第一种抗生素,

是在未来三年。

如果幸运的话,感染的人要么康复,

要么死亡。

我的叔叔并不幸运。

他在医院住了一个星期,
浑身发冷,

脱水,精神错乱,

器官衰竭,陷入昏迷。

他的病情变得如此绝望

,以至于他消防站的人
排着队给他输血,

希望能稀释
他血液中涌现的感染。

没有任何效果。 他死了。

他已经 30 岁了。

如果你回顾历史,

大多数人都是像
我叔叔那样死去的。

大多数人并没有
死于癌症或心脏病,

这些都是当今困扰我们西方的生活方式疾病

他们没有死于这些疾病,
因为他们没有活到足够长的时间

来发展它们。

他们死于受伤——

被一头牛刺伤,

在战场上被枪杀

,在工业革命的一个新工厂中被压死——

而且大部分时间都死于感染,

这结束了这些伤害的开始。 当抗生素出现时,

所有这一切都发生了变化

突然之间,曾经
被判处死刑的感染

变成了
你几天内就能康复的东西。

这似乎是一个奇迹

,从那以后,我们一直生活在
神奇药物的黄金时代。

而现在,我们即将结束。

我的叔叔在前抗生素时代的最后几天去世了

我们今天站在
后抗生素时代的门槛上,

在最初的日子里,

像乔这样的简单感染
将再次杀死人。

事实上,他们已经是了。

由于一种

称为抗生素耐药性的现象,人们再次死于感染。

简而言之,它是这样工作的。

细菌通过制造相互对抗的致命化合物来相互
竞争资源和食物

其他细菌为了保护自己,

会进化出防御
这种化学攻击的能力。

当我们第一次制造抗生素时,

我们将这些化合物带入实验室
并制造了我们自己的版本

,细菌以它们一贯的方式对我们的攻击作出反应

接下来发生的事情是:

1943 年开始分发

青霉素,1945 年出现广泛的青霉素耐药性

。1972 年出现了万古霉素,1988 年出现了对

万古霉素的耐药性

。1985 年出现了亚胺培南

,1998 年出现了耐药性。

达托霉素
是最近的药物之一,在 2003 年,

以及
仅仅一年后的 2004

年的抗药性。70 年来,我们玩
了一场跨越式的游戏——

我们的药物和他们的抗药性,

然后是另一种药物,
然后又是抗药性

——现在游戏结束了。

细菌产生耐药性的速度如此之快
,以至于制药

公司认为生产抗生素
并不符合他们的最佳利益,

因此
世界

各地都有感染发生,在市场上可用的
100 多种抗生素中

,有

两种药物可能会产生副作用,

或一种药物,

或没有。

这就是它的样子。

2000 年,美国疾病
控制与预防中心 (CDC)

在北卡罗来纳州的一家医院发现

了一个感染病例,该病例
对除两种药物外的所有药物均耐药。

今天,这种被称为 KPC 的感染

已经蔓延到除三个州以外的每个州,

以及南美、欧洲

和中东。

2008 年,瑞典的医生

诊断出一名来自印度的男子
患有不同的感染

,当时他对除一种药物外的所有药物都耐药。

产生这种抵抗力的基因

被称为 NDM,现在已经
从印度传播到中国、亚洲、非洲、

欧洲和加拿大以及美国。

希望这些感染
是特殊病例是很自然的,

但事实上,

在美国和欧洲,

每年有 50,000 人

死于没有药物可以帮助的感染。

英国政府特许的一个

名为“
抗菌素耐药性审查”的项目

估计,目前全球
每年有 700,000 人死亡。

那是很多人的死亡

,然而
,你很有可能不会感到有风险

,你可以想象这些人
是重症监护室的住院病人


接近生命尽头的疗养院居民,

他们的感染
是 远离我们,

在我们无法认同的情况下。

你没有想到的,
我们都没有想到的

是,抗生素
几乎支持了所有的现代生活。

如果我们失去了抗生素,

这就是我们会失去的其他东西:

首先,对
免疫系统较弱的人——

癌症患者、艾滋病患者、

移植受者、早产儿——的任何保护。

接下来,任何
在体内安装异物的

治疗:中风支架、糖尿病泵、

透析、关节置换。

有多少运动型婴儿潮一代
需要新的臀部和膝盖?

最近的一项研究估计
,如果没有抗生素,

六分之一的人会死亡。

接下来,我们可能会失去手术。

许多手术之前都会

使用预防性剂量的抗生素。

如果没有这种保护,

我们将失去
打开身体隐藏空间的能力。

所以没有心脏手术,

没有前列腺活检,

没有剖宫产。

我们必须学会
害怕现在看起来很小的感染。

链球菌性咽喉炎曾导致心力衰竭。

皮肤感染导致截肢。

在最干净的医院里,

几乎每 100 名妇女中就有 1 名妇女死于分娩。

肺炎夺走
了每 10 名儿童中的 3 名。

最重要的是,

我们将失去自信
的日常生活方式。

如果您知道任何伤害
都可能杀死您,

您会骑摩托车,

在滑雪场上轰炸,

爬梯子
挂圣诞灯,

让您的孩子滑入本垒板吗?

毕竟,第
一个接受青霉素的人,

一位名叫阿尔伯特·亚历山大的英国警察

,被感染蹂躏
到头皮渗出脓液

,医生不得不取出一只眼睛,

是因为做了
一件很简单的事情而被感染。

他走进他的花园
,在荆棘上抓了抓脸。

我提到的那个英国项目
估计现在全世界

每年有 700,000 人死亡,

它还预测,如果我们
不能在 2050 年之前控制住这种情况,

不久之后,全球
每年将有 1000 万人死亡。

我们是如何走到这

一步,我们不得不期待的

是那些可怕的数字?

困难的答案是,
我们是自己做的。

耐药性是一个不可避免的
生物过程,

但我们有
责任加速它。

我们通过粗心大意地浪费抗生素来做到这一点,

这现在看起来令人震惊。

直到 1950 年代,青霉素都在柜台销售。

在大部分发展中国家,
大多数抗生素仍然存在。

在美国,医院里 50%

的抗生素
是不必要的。 医生办公室

开出的处方中有 45%


针对抗生素无法解决的问题。

这只是在医疗保健领域。

在地球上的大部分地区,大多数肉食动物
每天都服用抗生素,

不是为了治愈疾病,

而是为了让它们肥壮
并保护它们

免受工厂化农场条件的影响

在美国,可能有 80

% 每年出售的抗生素
都用于农场动物,而不是人类,

从而产生抗药性细菌
,这些细菌会随着

水、灰尘

和动物变成的肉离开农场。

水产养殖也依赖抗生素,

特别是在亚洲

,水果种植依赖抗生素

来保护苹果、梨、
柑橘免受疾病侵害。

而且由于细菌可以

像旅行者
在机场交出手提箱一样将它们的 DNA 传递给彼此,所以

一旦我们鼓励
这种抵抗力存在,

就不知道它会传播到哪里。

这是可以预见的。

事实上,这是

由发现青霉素的人亚历山大·弗莱明(Alexander Fleming)预言的


于 1945 年获得诺贝尔奖以表谢意

,在不久之后的一次采访中,
他是这样说的:

“玩青霉素治疗的粗心大意的人

,对死于抗青霉素感染的人的死亡负有道德责任。

生物。”

他补充说:“我希望
能够避免这种邪恶。”

我们能避免吗?

有些公司正在
研究新型抗生素,

这是超级细菌
以前从未见过的东西。

我们非常需要这些新药

,我们需要激励措施:

发现拨款、延长专利、

奖励,以吸引其他公司
再次制造抗生素。

但这可能还不够。

原因如下:进化总是获胜。

细菌每 20 分钟产生一个新世代

药物化学需要
10 年才能衍生出一种新药。

每次我们使用抗生素时,

我们都会给细菌数十亿次机会

来破解

我们构建的防御系统的密码。

从来没有一种药物是

他们无法战胜的。

这是不对称战争,

但我们可以改变结果。

我们可以建立系统来收集
数据,自动告诉我们

抗生素是如何使用的。

我们可以
在药品订单系统中建立把关,

以便每张处方
都能重新审视。

我们可以要求
农业放弃使用抗生素。

我们可以建立监视系统

来告诉我们
接下来会在哪里出现阻力。

这些是技术解决方案。

除非我们提供帮助,否则它们可能还不够。

抗生素耐药性是一种习惯。

我们都
知道改变一个习惯有多难。

但作为一个社会,
我们过去曾这样做过。

人们过去常常将垃圾
扔到街上,

过去不系安全带,

过去常常在公共建筑内吸烟。

我们不再做那些事情了。

我们不会破坏环境

或引发毁灭性事故

或让他人接触
到癌症的可能性,

因为我们认为这些东西
是昂贵的、

具有破坏性的,不符合我们的最佳利益。

我们改变了社会规范。

我们也可以改变
围绕抗生素使用的社会规范。

我知道
抗生素耐药性的规模

似乎势不可挡,

但如果

你曾经因为
担心气候变化而购买过荧光灯泡,

或者

因为考虑
过棕榈油造成的森林砍伐而读过一盒饼干上的标签,

那么你已经 知道

迈出一小步来解决
一个压倒性的问题是什么感觉。

我们也可以采取这些措施
来使用抗生素。

如果我们不确定它是否合适,我们可以放弃给予抗生素。 在我们确定是什么原因之前,

我们可以停止坚持
为孩子的耳朵感染开处方

我们可以询问每家餐馆、

每家超市

,他们的肉是从哪里来的。

我们可以互相保证

不再购买常规使用抗生素饲养的鸡肉
、虾或水果

,如果我们这样做,

我们可以减缓
后抗生素世界的到来。

但我们必须尽快完成。

青霉素
于 1943 年开启了抗生素时代。

仅仅 70 年,我们
就走到了灾难的边缘。

我们不会有 70 年的时间

再次找到我们的出路。

非常感谢你。

(掌声)