What happened to antimatter Rolf Landua

Translator: Andrea McDonough
Reviewer: Jessica Ruby

Is it possible to create something out of nothing?

Or, more precisely, can energy be made into matter?

Yes, but only when it comes together

with its twin, antimatter.

And there’s something pretty mysterious about antimatter:

there’s way less of it out there than there should be.

Let’s start with the most famous physics formula ever:

E equals m c squared.

It basically says that mass is concentrated energy,

and mass and energy are exchangeable,

like two currencies with a huge exchange rate.

90 trillion Joules of energy

are equivalent to 1 gram of mass.

But how do I actually transform energy into matter?

The magic word is energy density.

If you concentrate a huge amount

of energy in a tiny space,

new particles will come into existence.

If we look closer,

we see that these particles always come in pairs,

like twins.

That’s because particles always have a counterpart,

an antiparticle,

and these are always produced

in exactly equal amounts: 50/50.

This might sound like science fiction,

but it’s the daily life of particle accelerators.

In the collisions between two protons

at CERN’s Large Hadron Collider,

billions of particles and antiparticles

are produced every second.

Consider, for example, the electron.

It has a very small mass and negative electric charge.

It’s antiparticle, the positron,

has exactly the same mass,

but a positive electric charge.

But, apart from the opposite charges,

both particles are identical and perfectly stable.

And the same is true for their heavy cousins,

the proton and the antiproton.

Therefore, scientists are convinced

that a world made of antimatter

would look, feel, and smell just like our world.

In this antiworld,

we may find antiwater,

antigold,

and, for example,

an antimarble.

Now imagine that a marble and an antimarble

are brought together.

These two apparently solid objects

would completely disappear

into a big flash of energy,

equivalent to an atomic bomb.

Because combining matter and antimatter

would create so much energy,

science fiction is full of ideas

about harnessing the energy stored in antimatter,

for example, to fuel spaceships like Star Trek.

After all, the energy content of antimatter

is a billion times higher than conventional fuel.

The energy of one gram of antimatter would be enough

for driving a car 1,000 times around the Earth,

or to bring the space shuttle into orbit.

So why don’t we use antimatter for energy production?

Well, antimatter isn’t just sitting around,

ready for us to harvest.

We have to make antimatter

before we can combust antimatter,

and it takes a billion times more energy

to make antimatter

than you get back.

But, what if there was some antimatter in outer space

and we could dig it out one day

from an antiplanet somewhere.

A few decades ago, many scientists believed

that this could actually be possible.

Today, observations have shown

that there is no significant amount of antimatter

anywhere in the visible universe,

which is weird because, like we said before,

there should be just as much antimatter

as there is matter in the universe.

Since antiparticles and particles

should exist in equal numbers,

this missing antimatter?

Now that is a real mystery.

To understand what might be happening,

we must go back to the Big Bang.

In the instant the universe was created,

a huge amount of energy was transformed into mass,

and our initial universe contained

equal amounts of matter and antimatter.

But just a second later,

most matter and all of the antimatter

had destroyed one another,

producing an enormous amount of radiation

that can still be observed today.

Just about 100 millionths

of the original amount of matter stuck around

and no antimatter whatsoever.

“Now, wait!” you might say,

“Why did all the antimatter disappear

and only matter was left?”

It seems that we were somehow lucky

that a tiny asymmetry exists

between matter and antimatter.

Otherwise, there would be no particles at all

anywhere in the universe

and also no human beings.

But what causes this asymmetry?

Experiments at CERN are trying to find out the reason

why something exists

and why we don’t live in a universe

filled with radiation only?

But, so far, we just don’t know the answer.

译者:Andrea McDonough
审稿人:Jessica Ruby

有没有可能无中生有?

或者,更准确地说,能量可以转化为物质吗?

是的,但只有当它

与它的孪生反物质结合在一起时。

反物质有一些非常神秘的地方:

它比应该有的要少得多。

让我们从有史以来最著名的物理公式开始:

E 等于 m c 的平方。

它基本上说质量是集中的能量

,质量和能量是可以交换的,

就像两种具有巨大汇率的货币一样。

90 万亿焦耳的

能量相当于 1 克质量。

但是我如何真正将能量转化为物质呢?

神奇的词是能量密度。

如果你把大量

的能量集中在一个很小的空间里,

就会产生新的粒子。

如果我们仔细观察,

我们会发现这些粒子总是成对出现,

就像双胞胎一样。

那是因为粒子总是有一个对应物,

一个反粒子,

并且它们总是

以完全相同的数量产生:50/50。

这听起来像是科幻小说,

但这是粒子加速器的日常生活。

在欧洲核子研究中心大型强子对撞机的两个质子之间的碰撞中,每秒产生

数十亿个粒子和反

粒子。

例如,考虑电子。

它具有非常小的质量和负电荷。

它的反粒子,即正电子,

具有完全相同的质量,

但带有正电荷。

但是,除了相反的电荷之外,

两个粒子都是相同的并且非常稳定。

他们的重

表亲质子和反质子也是如此。

因此,科学家们坚信

,一个由反物质构成的世界在

外观、感觉和气味上都与我们的世界一样。

在这个反世界中,

我们可能会发现

反水、反金

,例如,

反大理石。

现在想象一下大理石和反

大理石放在一起。

这两个看似固体的物体

会完全消失

在巨大的能量闪光中,

相当于一颗原子弹。

因为结合物质和反物质

会产生如此多的能量,所以

科幻小说中充满了

关于利用储存在反物质中的能量的想法,

例如,为星际迷航等宇宙飞船提供燃料。

毕竟,反物质的能量含量

是传统燃料的十亿倍。

一克反物质的能量足以

让汽车绕地球1000圈,

或将航天飞机送入轨道。

那么为什么我们不使用反物质来生产能源呢?

嗯,反物质不只是坐在那里,

准备好让我们收获。

我们必须先制造反

物质,然后才能燃烧反物质,制造反物质

需要的

能量是

你返回的能量的十亿倍。

但是,如果外太空中有一些反物质

,我们有一天可以

从某处的反行星中挖掘出来。

几十年前,许多科学家

认为这实际上是可能的。

今天,观察

表明,可见宇宙中的任何地方都没有大量的反物质

这很奇怪,因为就像我们之前所说的

,反物质应该

和宇宙中的物质一样多。

既然反粒子和粒子

应该以相等的数量存在,那么

这个缺失的反物质呢?

现在这是一个真正的谜。

要了解可能发生的事情,

我们必须回到大爆炸。

在宇宙被创造

的那一刻,大量的能量转化为质量

,我们最初的宇宙包含了

等量的物质和反物质。

但仅仅一秒钟后,

大部分物质和所有反物质

都相互摧毁,

产生了

今天仍然可以观察到的大量辐射。

只有大约百万分之一

的原始物质停留在周围

,没有任何反物质。

“现在,等等!” 你可能会说,

“为什么所有的反物质都消失了

,只剩下物质了?”

似乎我们很幸运

物质和反物质之间存在微小的不对称性。

否则,宇宙中根本就没有粒子

,也没有人。

但是是什么导致了这种不对称性呢?

欧洲核子研究中心的实验正试图找出

某些东西存在的原因,

以及为什么我们不生活在一个

只充满辐射的宇宙中?

但是,到目前为止,我们只是不知道答案。