Lets reuse building parts

i’d like to speak about buildings

we all know buildings right we were born

in buildings

we were raised in buildings most of us

are working in buildings we may even die

in buildings but let’s forget about

us for a while and let’s focus on the

building lifecycle itself

if we want to create a building the

first thing we would need to extract

materials we would need to process

that material in order to manufacture a

new component

and we will assemble those components

according to plants

and the plans will vary a school is

different from a factory

a house is different from an office

building

we need different spaces we have

different needs

and so we are building we are

constructing our buildings

according to our needs but our needs

evolve quite fast

and the building lifespan is quite long

just to give you an example

60 years ago there would have been

always a war in between the kitchen

and the living room today we don’t build

that wall anymore we don’t need it

another example two years ago

before the pandemic started no one would

have expected

that most of the students most of the

employees would have to work from home

in a separate office in their own house

in their own apartment

right next to the kids to the friends to

the family

so our needs are evolving quite fast the

good news is that

building can adapt that we can add a

wall we can remove a wall

we can extend the building we can

replace the envelope we can

transform an office building into an

apartment building and vice versa

but at some point the buildings will not

be able to adapt

anymore and we will have to replace it

at some point any building may become

obsolete it may happen

in 20 years from now it may happen 100

years it may happen in 200 years we

don’t know

but what we know is that we are

demolishing buildings on daily basis

today

and this is an environmental issue

today one third of all solid waste in

europe

is due to the construction and

demolition of buildings

today at least 11 of all greenhouse

greenhouse gas emissions

related to human processes are due to

the construction

the transformation and the demolition of

buildings

and these numbers do not take into

account the greenhouse gas emissions

related to

the operation of the building so the

heating the ventilation

the cooling and the electricity in the

buildings this at least 11

of greenhouse gas emissions are just

related to the construction

the transformation and the demolition of

buildings

and these numbers these amounts will

grow in the next

years the main reason is that the world

population

will grow in the next 50 years mainly in

urban areas and that will put more

pressure on existing buildings

because sustainable cities

will have to grow from within that means

that

smaller buildings will have to

leave room for bigger buildings

so there are reasons why we are

demolishing buildings and it’s very hard

to go against that

but the real issue here is that whenever

we demolish a building

we actually throw away its parts as well

its beams its doors its slaps its

windows

but those parts are still performing

well most of the time the reason why we

demolish a building is because we don’t

use it

and we don’t need it anymore we don’t

need it at that

location at that point in time

but still safe buildings its slabs can

still be used as slabs

its columns are still good columns doors

are still good doors

so here is my question

why aren’t we allowing those components

to outlive the depths of their building

and why aren’t we reusing those

components in new configurations

elsewhere for new purposes

because every reused component is a

component that is not manufactured

imagine the amount of waste that could

be avoided

imagine the amount of greenhouse gas

emissions that could be

avoided this is not my idea this is not

a new idea this is actually a pretty

common sense idea

that people applied in the past on a

daily basis

just to give you an example here is a

bridge built in 1810

over the rhine at the border between

switzerland and

and germany it’s a very nice

timber-covered bridge

but 100 years later engineers decided to

replace that bridge with a bigger one

and the story is very interesting

because

parts of the beams used in dead beams

have been moved and used in order to

build

this newborn in the village nearby

and if you look at the cuts of the

columns on

that barn we can actually see the traces

of the past of these columns we can see

the heritage the embedded heritage of

the previous uses of these columns

so this bound was built in 1920

and it’s still in use today 100 years

later

so what do we have here in front of us

we have a 100 year old building

that is made of 200 year-old components

and that’s really the spirit of reuse

the goal of the reuse strategy is to

expand the lifespan of the component as

much

as we can even if it means that those

components

are fulfilling new purposes

today reuse is one of the few strategy

that

will allow to to reach a circular

economy

alongside with the recycling strategy

we all know about recycling but it’s

actually completely different from the

reuse

strategy whenever we recycle material we

would reprocess it

we’d apply energy we would transform it

we would melt it we would

crash it in order to create a brand new

material

but in the real strategies we don’t want

to touch the component

we want to reuse it as it is we want to

benefit from all the embedded value

inside the component that is already

there

and the application of reuse and

circular economy can bring a lot of

benefits it can allow us to reach

more environmental sustainability to

reach more

economic sustainability and more social

sustainability as well

but the truth is that today reuse is not

common at all and there are reasons why

there are indeed technological barriers

there are legal barriers

and there are also psychological

barriers white psychological barriers

because we we as humans we tend to be

afraid of things that

we don’t know and this is a real issue

whenever

we have to reuse components

but i believe that those barriers are

temporary

and must be tackled now and for that

reason i’m leading

a team of wonderful researchers

architects and civil engineers

and our aim is to explore new ways of

reusing components

such as to contribute to the fight

against climate crisis

and to avoid any potential future

resource

crisis

the very source project that we did was

to build

this pavilion made of skis

thousands of skis are thrown away every

year

and ski is a composite material that’s

very hard to recycle

but there is a very useful technological

value

embedded inside those keys so why don’t

we reuse it

are we gonna save the world with keys

and buildings well no

definitely not but there are a few key

takeaways that we can

get from this experiment the main one

is that we show that we can build high

performance structures

structures with very complex mechanical

behavior

while not controlling everything about

the material that we put in place

we don’t know these keys we don’t know

where they come from

they are all different we don’t know

what they are made of

we don’t know their mechanical

properties

but it’s okay we can build enough

confidence

in order to make sure that the the

structure

is safe and it’s all that matters we

don’t have to

control everything

and so we are helping our architects and

engineers to

make more reuse in their practice

and if we look at the design process

itself

we’re actually facing a completely

different

um problem

in a conventional design process the

designer would first

draw the overall shape of the structure

and then little by little more

information will be discovered

until we know exactly how we want to

manufacture the components

we know what properties we want to have

what length we want to have

we know what materials we want to use

but whenever we deal with an existing

stock

of elements

those properties they are given the

length

of the components are given their

dimensions are given their mechanical

properties are given

the material is given as well and we

have to deal with that

and the new goal now is to find the best

shape

the shape that will make the best reuse

of these components

so we are developing algorithms and

tools in order to automate

part of this process and we’re also

applying these tools to case studies

and here is a case study performed by a

master student

he actually designed a roof truss for a

train

station out of elements

that are only coming from dismantled

by electric pylons and those electric

pilots are

actually about to be dismantled in the

area

and with that case studies but also with

all the other key studies that we do

whenever we compare two steel traces for

instance

one in one scenario made with reused

components

and the other scenario made with brand

new components newly manufactured

components with recycled content in them

so whenever we compare these two traces

what we see is that in the reuse

scenario the mass is always bigger

usually we would say it’s an issue but

actually it’s okay i mean

just there because we are not using the

material in the most efficient way

but what matters is that in all cases

greenhouse gas emissions related to the

contraction

of the reused scenario

are lower than the one in the new

scenario

and this is what matters if we want to

lower

global warming

there are many questions that have to be

addressed as soon as possible

we are also looking at how the reuse

potential

of existing building stocks can be

assessed

on a large scale on a territorial scale

we’re also

also looking at ways to better reclaim

existing reinforced concrete slabs and

walls in buildings

and last but not least we are also

looking at new ways

to design slap systems that can be

reused in the future

with new spans in between columns with

new floor plans with new loads applied

to them

without oversizing the components the

slabs themselves

we don’t know what the future will be

about we don’t know what will be the

needs

in 100 200 years for now what buildings

we’ll

have to to to provide

but doesn’t mean that we cannot try to

ease the dismantling

of the components we put in place today

and it doesn’t mean that we cannot try

to make sure that

those components can be reused in new

unknown configurations

so in conclusion the message

here is that if we want to fight the

climate crisis

if we want to avoid any future resource

crisis

we have to give more value to the things

that already exist

we have to give more value to the

buildings that already exist

we have to keep them to maintain them as

much as we can

but once those buildings cannot exist

anymore and there are reasons why

at some point any building may not exist

anymore may be demolished

then at that moment we have to make sure

that

components the parts of these buildings

their slabs their walls their currents

their doors

their windows we have to make sure that

those components

are reused in new buildings in new

locations

in new configurations for new purposes

and last but not least for new

generations

of users thank you very much

you

我想谈谈建筑物

我们都知道建筑物 我们出生

在建筑物中

我们在建筑物中长大 我们大多数人

都在建筑物中工作 我们甚至可能死

在建筑物中 但让我们暂时忘记

我们,让我们专注于

建筑物 生命周期本身

如果我们想建造一座建筑物,

我们首先需要提取

材料,我们需要处理

该材料以制造

新组件

,我们将根据工厂组装这些组件

,计划会有所不同,学校

不同 从

工厂 房子不同于办公楼

我们需要不同的空间 我们有

不同的需求

,所以我们正在建造 我们正在

根据我们的需求建造我们的建筑物,但我们的需求

发展很快

,建筑物的使用寿命很长,

只是为了给你 一个例子

60 年前

厨房和客厅之间总是会发生战争

今天我们不再

建造那堵墙 我们不再需要它

两年前的另一个例子

,在大流行开始之前,没有人会

想到大多数学生大多数

员工将不得不在家

中的一个单独的办公室工作,

在他们自己的公寓里

,在孩子们旁边,在朋友旁边,

家庭

所以我们的需求变化很快

好消息是

建筑物可以适应 我们可以添加一

堵墙 我们可以移除一堵墙

我们可以扩展建筑物 我们可以

更换信封 我们可以

将办公楼改造成

公寓楼 反之亦然 反之亦然,

但在某些时候,建筑物

将无法再适应

,我们将不得不

在某些时候更换它

不知道,

但我们知道的是,我们今天每天都在

拆除建筑物

,这是

当今的一个环境问题,欧洲三分之一的固体废物

是由于建筑和

拆除造成的 在当今的建筑物

中,至少有 11 个

与人类过程相关的温室气体排放是由于

建筑物的建造、改造

和拆除造成的,这些数字并未

考虑与建筑物运营相关的温室气体排放

因此

建筑物的供暖通风制冷和供电这至少有 11

种温室气体排放

与建筑物

的改造和拆除有关

,这些数字

在未来

几年内还会增长,主要原因是世界

未来 50 年人口将主要在

城市地区增长,这将对

现有建筑造成更大压力,

因为可持续城市

必须从内部发展,这意味着

较小的建筑将不得不

为较大的建筑留出空间,

所以我们有理由这样做

拆除建筑物,

很难反对,

但现实是 苏这里是,每当

我们拆除建筑物时,

我们实际上都扔掉了它的部件以及

它的横梁它的门它拍打它的

窗户

但这些部件在

大多数情况下仍然表现良好我们

拆除建筑物的原因是因为我们不

使用 它

,我们不再需要它,我们

在那个时间点在那个位置不需要它,

但仍然是安全的建筑物它的楼板

仍然可以用作楼板

它的柱子仍然是好柱门

仍然是好门

所以这是我的 质疑

为什么我们不允许这些组件

在其建筑物的深度中使用得更久

,为什么我们不在其他地方以新配置重新使用这些

组件以

用于新目的,

因为每个重复使用的

组件都是非制造的组件

想象一下可能产生的废物量

可以避免

想象一下可以避免的温室气体

排放量

这不是我的想法 这不是

一个新想法 这实际上是人们过去应用的一个非常

常识的想法

每天

只是举个例子,这里是

一座建于 1810 年的桥,

横跨莱茵河,位于瑞士

和德国之间

这个故事很有趣,

因为

用于死梁的部分梁

已经被移动和使用,以便

在附近的村庄建造这个新生儿

,如果你看看那个谷仓上柱子的切口,

我们实际上可以

看到 这些柱子的过去,我们可以看到

这些柱子以前使用的嵌入式遗产,

所以这个界建于 1920 年

,100 年后今天仍在使用

所以我们面前有什么

我们有一个 100

由 200 年历史的组件组成的古老建筑

,这才是真正的重用精神

重用策略的目标是尽可能地

延长组件的使用寿命,

即使这意味着那些

组件 Nents

正在实现

今天的新目的,再利用是少数

可以实现循环

经济

的策略之一,与我们都知道的回收利用策略一起,

但它

实际上与

再利用

策略完全不同,每当我们回收材料时,我们

都会对其进行再

加工 我们会应用能量我们会改变它

我们会熔化它我们会

破坏它以创造一种全新的

材料

但在真正的策略中我们

不想触及

我们想要重复使用它的组件因为它是我们想要

受益的 从

已经存在的组件内部的所有嵌入价值来看

,再利用和

循环经济的应用可以带来很多

好处,它可以让我们实现

更多的环境可持续性,从而

实现更多的

经济可持续性和更多的社会

可持续性,

但事实是 今天的再利用根本不

普遍,确实存在技术障碍是有原因的,

有法律障碍

,有 也是心理

障碍 白色的心理障碍,

因为我们作为人类,我们倾向于

害怕

我们不知道的事情,每当我们必须重用组件时,这都是一个真正的问题

但我相信这些障碍是

暂时的

,现在必须解决 出于这个

原因,我领导着

一个由优秀的研究人员

建筑师和土木工程师组成的团队

,我们的目标是探索

重新使用组件的新方法,

例如为

应对气候危机

和避免任何潜在的未来

资源

危机做出贡献 我们所做的

就是建造

这个由滑雪板制成的亭子

我们会用钥匙和建筑物拯救世界吗?

当然不是,但

我们

可以从这个实验中得到一些关键的收获

一是我们展示了我们可以构建

具有非常复杂的机械行为的高性能结构结构,

同时不控制

我们放置的材料的所有内容

我们不知道这些关键我们不

知道它们来自哪里

它们都是不同的 我们不

知道它们是由什么制成的

我们不知道它们的机械

性能,

但没关系,我们可以建立足够的

信心

以确保

结构

是安全的,这一切都是我们

不必

控制一切的重要因素

所以我们正在帮助我们的建筑师和

工程师

在他们的实践中进行更多的重用

,如果我们看看设计过程

本身,

我们实际上面临着一个完全

不同的

问题

,在传统的设计过程中,

设计师首先会

画出整体形状 结构

,然后一点

一点地发现更多信息,

直到我们确切地知道我们想要如何

制造组件

我们知道我们想要拥有什么

特性 我们想要的长度

我们知道我们想要使用什么材料,

但是每当我们处理现有

的元素库存时,

这些属性给定它们的

长度

,给定组件的长度,给定它们的

尺寸,给定它们的机械

性能,给

定材料 好吧,我们

必须解决这个问题

,现在的新目标是找到最好

的形状,使这些组件得到最好的

重用,

所以我们正在开发算法和

工具,以自动化

这个过程的一部分,我们也在

将这些工具应用于案例研究

,这是一个由一名硕士生进行的案例研究,

他实际上为火车站设计了一个屋顶桁架,其中

元素仅来自于

被电塔拆除的元素,而这些电动

飞行员

实际上即将被拆除 该

区域

以及该案例研究以及

我们在比较两条钢迹线时所做的所有其他关键研究,例如

一对一的场景 使用重复使用的

组件

和使用全新组件制成的其他场景

新制造的

组件中包含回收的内容,

所以每当我们比较这两个痕迹时

,我们看到的是,在重复使用

场景中,质量总是更大,

通常我们会说这是一个问题,但

实际上 没关系,我的意思是

就在那里,因为我们没有

以最有效的方式使用材料,

但重要的是,在所有情况下

,与重复使用场景的收缩相关的温室气体排放量

都低于新场景中的排放量

,这就是 如果我们想

降低

全球变暖,

那么有很多问题需要

尽快解决

我们也在研究如何在领土范围内大规模评估

现有建筑库存的再利用潜力

我们

也在 寻找更好地回收

建筑物中现有钢筋混凝土板和墙壁的方法

,最后但同样重要的是,我们也在

寻找新的方法

设计可以

在未来重复使用的 slap 系统,

在柱子之间有新的跨度,

新的平面图,施加新的载荷

而不会使组件尺寸过大

楼板本身

我们不知道未来会

怎样 我们不知道 100200 年后的

需求

是什么

我们

必须提供什么建筑,

但这并不意味着我们不能尝试

简化

我们今天安装的组件的拆除

,这并不意味着我们 不能

试图确保

这些组件可以在新的未知配置中重复使用,

所以总而言之,这里的信息

是,如果我们想应对

气候危机,

如果我们想避免任何未来的资源

危机,

我们必须给

那些 已经存在,

我们必须为已经存在的建筑物赋予更多价值,

我们必须保留它们以尽可能多地维护它们,

但是一旦这些建筑物

不再存在并且有理由

在某些时候任何建筑物 ng 可能不再存在

可能会被拆除

那时我们必须确保

组件 这些建筑物的部分

他们的楼板 他们的墙壁 他们的电流

他们的门

他们的窗户 我们必须确保

这些组件

在新地点的新建筑物中被重复使用

在新配置中用于新用途

,最后但并非最不重要的

新一代用户非常感谢您