Animation basics The art of timing and spacing TEDEd

Norman McLaren, the great 20th century pioneer of animation technique,

once said, “Animation is not the art of drawings that move,

but the art of movements that are drawn.

What happens between each frame is more important

than what exists on each frame.”

What did he mean?

Well, for an object to appear in motion,

it necessarily has to change in position over time.

If time passes and no change in position occurs,

the object will appear to be still.

This relationship between the passage of time

and the amount of change that occurs in that time

is at the heart of every time-based art form,

be it music, dance, or motion pictures.

Manipulating the speed and amount of change

between the frames is the secret alchemy

that gives animation the ability to convey the illusion of life.

In animation, there are two fundamental principles

we use to do this:

timing and spacing.

To illustrate the relationship between them,

we’ll use a timeless example: the bouncing ball.

One way to think about timing

is that it’s the speed, or tempo,

at which an action takes place.

We determine the speed of an action

by how many pictures, or frames, it takes to happen.

The more frames something takes to happen,

the more time it spends on screen,

so the slower the action will be.

The fewer frames something takes to happen,

the less screen time it takes,

which gives us faster action.

The timing is about more than just speed,

it’s also about rhythm.

Like a drumbeat or melody only exists

when a song is being played,

the timing of an action

only exists while it’s happening.

You can describe it in words,

say, something will take 6 frames, 18 frames, or so on.

But to really get a sense of it,

you need to act it out

or experience it as it would happen in, well, real time.

Now, the timing of an action

all depends on the context of the scene

and what you’re trying to communicate.

What is doing the acting, and why?

Let’s take our example.

What makes a ball bounce?

The action we’re talking about here

is a result of interacting physical forces,

a moving ball’s tendency to stay in motion,

or its force of momentum

vs. the constant force of gravity

bringing it back down Earth.

The degree to which these invisible forces apply,

and the reason why the ball behaves the way it does,

all depends on the physical properties of the ball.

A golf ball is small, hard and light.

A rubber ball is small, soft and lighter.

A beach ball is large, soft and light.

And a bowling ball is large, hard and heavy.

So, each ball behaves very differently,

according to its properties.

Let’s get a sense of the visual rhythm of each.

Each ball plays its own beat

and tells us something about itself

and the time it takes to travel across the screen.

The visual rhythm of these hits is the timing.

Okay, let’s start animating our ball,

bouncing up and down with a simple cycle of drawings.

We’ll draw a circle here,

call it point A, our starting point.

We’ll have it hit the ground here, point B.

Let’s say it takes about a second

to hit the ground and come back up again.

This is our timing.

Our spacing is where we position the circle

in the frames between point A and point B.

If we were to move our ball

in evenly-spaced increments,

we’d get something like this.

It’s not really telling us anything about itself.

Is it a bouncing ball or a circle on an elevator?

Let’s look at our footage again

and think about what’s going on

as each ball bounces.

Following each impact with the ground,

the ball’s upward momentum

is eventually overcome by gravity.

This happens at the peak of each arc.

As things change direction,

the motion is slowest.

We see here the successive positions of the ball

are close together.

The ball then speeds up as it falls,

and is at its fastest

when it’s approaching and hitting the ground.

We can see here each position is further apart.

The change in position between frames

is the spacing.

The smaller the change,

the slower the action will appear.

The greater the change,

the faster it will appear.

For an action to decelerate,

each change in position must be less than the change before it.

Likewise, for an action to speed up, or accelerate,

each successive change must be greater.

Let’s change the mechanical spacing

of our animated bounce

to reflect what we observed in the footage.

Slow at the top, fast when it’s hitting the ground.

Simply by adjusting the spacing,

we’ve succeeded in suggesting

the forces of momentum and gravity at play

and achieved a much more realistic motion.

Same timing but different spacing

gives us vastly different results.

And in reality, as a ball bounces,

the physics of gravity eventually defeat

the tendency of the ball to stay in motion.

You can see this here in the decreasing height

of each successive bounce.

However, again, this decrease varies

according to the properties of the ball.

Even though these circles are the same size here,

they’re each telling us a different story about themselves,

purely in how they move.

The relationship between these principles

of timing and spacing

can be applied in countless ways

and used to animate all types of action:

a yo-yo,

a punch,

a gentle tap,

a push,

a saw,

the Sun traveling across the sky,

a pendulum.

Animation is a time-based art form.

It may incorporate the aesthetic elements

of other graphic arts,

like illustration or painting,

but what sets animation apart

is that, here, what you see

is less important that what you don’t see.

An object’s superficial appearance

only tells us so much about itself.

It’s only when it’s in motion

that we really understand its nature.

20 世纪动画技术的伟大先驱诺曼·麦克拉伦 (Norman McLaren)

曾说过:“动画不是移动

的绘画艺术,而是绘制的动作艺术。

每一帧之间发生的事情比每一帧上存在的事情更重要

。 "

他是什么意思?

嗯,一个物体要出现在运动中,

它的位置必然会随着时间的推移而改变。

如果时间流逝并且位置没有发生变化,

则物体看起来是静止的。

时间流逝

和当时发生的变化量之间的这种关系

是每一种基于时间的艺术形式的核心

,无论是音乐、舞蹈还是电影。

控制帧之间变化的速度和数量是

让动画能够传达生命幻觉的秘密炼金术。

在动画中,我们使用两个基本原则

来做到这一点:

时间和间距。

为了说明它们之间的关系,

我们将使用一个永恒的例子:弹跳球。

考虑时间的一种方法

是,它是动作发生的速度或节奏

我们

通过需要发生多少张图片或帧来确定动作的速度。

某件事发生的帧

越多,它在屏幕上花费的时间就越多,

所以动作就会越慢。

事情发生的帧

越少,屏幕时间就越少,

这给了我们更快的行动。

时机不仅关乎速度,

还关乎节奏。

就像鼓声或旋律只

在播放歌曲时存在一样,

动作的时机也

只在它发生时存在。

你可以用语言来描述它,

比如说,某件事需要 6 帧、18 帧等等。

但是要真正了解它,

您需要将其表演出来

或体验它,因为它会实时发生。

现在,一个动作的时机

完全取决于场景的上下文

以及你想要传达的内容。

什么在演戏,为什么?

让我们举个例子。

是什么让球反弹?

我们在这里谈论的动作

是相互作用的物理力的结果,

一个移动的球保持运动的趋势,

或者它的动量

力与

将它带回地球的恒定重力。

这些无形的力量施加的程度,

以及球的行为方式的原因,

都取决于球的物理特性。

高尔夫球又小又硬又轻。

橡皮球小、软、轻。

沙滩球又大又软又轻。

保龄球又大又硬又重。

因此,根据其属性,每个球的行为都非常不同

让我们来感受一下每个人的视觉节奏。

每个球都有自己的节奏

,告诉我们一些关于它自己的事情

以及它穿过屏幕所需的时间。

这些命中的视觉节奏就是时机。

好的,让我们开始为我们的球设置动画

,通过简单的绘图循环上下弹跳。

我们将在这里画一个圆圈,

称之为 A 点,我们的起点。

我们会让它在这里落地,B 点。

假设它需要大约一秒钟

才能落地并再次升起。

这是我们的时机。

我们的间距是我们

在 A 点和 B 点之间的帧中定位圆的位置。

如果我们要

以均匀间隔的增量移动我们的球,

我们会得到类似的结果。

它并没有真正告诉我们任何关于它自己的事情。

是弹跳球还是电梯上的圆圈?

让我们再看看我们的镜头

,想想

每个球反弹时发生了什么。

每次撞击地面后

,球的向上

动量最终被重力克服。

这发生在每个弧的顶点。

当事物改变方向时

,运动是最慢的。

我们在这里看到球的连续位置

很接近。

然后球在下落时加速,

并且在

接近并撞到地面时速度最快。

我们可以在这里看到每个位置都相距更远。

帧之间的位置变化

是间距。

变化越小,

动作出现的越慢。

变化越大,

出现的速度就越快。

对于要减速的动作

,位置的每次变化都必须小于之前的变化。

同样,对于加速或加速的动作,

每个连续的变化都必须更大。

让我们更改动画反弹的机械间距

以反映我们在镜头中观察到的内容。

上坡慢,落地时快。

只需调整间距,

我们就成功地暗示

了动量和重力的作用,

并实现了更加逼真的运动。

相同的时间但不同的间距

会给我们带来截然不同的结果。

实际上,当球反弹时,

重力的物理特性最终会击败

球保持运动的趋势。

您可以在每次连续反弹的高度降低中看到这一点

然而,同样,这种减少会

根据球的特性而变化。

尽管这些圆圈在这里大小相同,

但它们都在向我们讲述关于自己的不同故事,

纯粹是它们的移动方式。

这些时间和间隔原则之间的关系

可以以无数种方式应用,

并用于动画所有类型的动作

:悠悠球

、拳击

、轻敲

、推

、锯

、太阳划过天空

、 摆。

动画是一种基于时间的艺术形式。

它可能包含

其他图形艺术的美学元素,

如插图或绘画,

但动画的不同之

处在于,在这里,你看到

的不如你看不到的重要。

一个物体的表面外观

只能告诉我们很多关于它自己的信息。

只有当它在运动时

,我们才能真正了解它的本质。