Calculating The Odds of Intelligent Alien Life Jill Tarter

Transcriber: Ido Dekkers
Reviewer: Ariana Bleau Lugo

(Music)

The basic question is, does life exist beyond Earth?

Scientists who are called astrobiologists

are trying to find that out right now.

Most astrobiologists are trying to figure out

if there’s microbial life on Mars,

or in the ocean under the frozen surface of Jupiter’s moon Europa,

or in the liquid hydrocarbon lakes

that we’ve found on Saturn’s moon Titan.

But one group of astrobiologists works on SETI.

SETI is the Search for Extraterrestrial Intelligence,

and SETI researchers are trying to detect some evidence

that intelligent creatures elsewhere

have used technology to build a transmitter of some sort.

But how likely is it

that they will manage to find a signal?

There are certainly no guarantees when it comes to SETI,

but something called the Drake equation,

named after Frank Drake,

can help us organize our thinking

about what might be required

for successful detection.

If you’ve dealt with equations before,

then you probably expect

that there will be a solution to the equation,

a right answer.

The Drake equation, however, is different,

because there are so many unknowns.

It has no right answer.

As we learn more about our universe

and our place within it,

some of the unknowns get better known,

and we can estimate an answer a bit better.

But there won’t be a definite answer to the Drake equation

until SETI succeeds

or something else proves that

Earthlings are the only intelligent species in our portion of the cosmos.

In the meantime,

it is really useful to consider the unknowns.

The Drake equation attempts to estimate

the number of technological civilizations

in the Milky Way Galaxy – we call that N –

with whom we could make contact,

and it’s usually written as:

N equals R-star

multiplied by f-sub-p

multiplied by n-sub-e

multiplied by f-sub-l

multiplied by f-sub-i

multiplied by f-sub-c

and lastly, multiplied by capital L.

All those factors multiplied together

help to estimate the number

of technological civilizations

that we might be able to detect right now.

R-star is the rate at which

stars have been born in the Milky Way Galaxy

over the last few billion years,

so it’s a number that is stars per year.

Our galaxy is 10 billion years old,

and early in its history stars formed at a different rate.

All of the f-factors are fractions.

Each one must be less than or equal to one.

F-sub-p is the fraction of stars that have planets.

N-sub-e

is the average number of habitable planets

in any planetary system.

F-sub-l

is the fraction of planets on which life actually begins

and f-sub-i is the fraction of all those life forms

that develop intelligence.

F-sub-c is the fraction of intelligent life

that develops a civilization

that decides to use some sort of transmitting technology.

And finally, L –

the longevity factor.

On average, how many years

do those transmitters continue to operate?

Astronomers are now almost able

to tell us what the product of the first three terms is.

We’re now finding exoplanets almost everywhere.

The fractions dealing with life and intelligence

and technological civilizations

are ones that many, many experts ponder,

but nobody knows for sure.

So far,

we only know of one place in the universe

where life exists,

and that’s right here on Earth.

In the next couple of decades,

as we explore Mars and Europa and Titan,

the discovery of any kind of life there

will mean that life will be abundant

in the Milky Way.

Because if life originated twice

within this one Solar System,

it means it was easy,

and given similar conditions elsewhere,

life will happen.

So the number two is a very important number here.

Scientists, including SETI researchers,

often tend to make very crude estimates

and acknowledge that there are very large

uncertainties in these estimates, in order to make progress.

We think we know

that R-star and n-sub-e are both numbers that

are closer to 10 than, say, to one,

and all the f-factors are less than one.

Some of them may be much less than one.

But of all these unknowns,

the biggest unknown is L,

so perhaps the most useful version of the Drake equation

is simply to say that

N is approximately equal to L.

The information in this equation is very clear.

Unless L is large,

N will be small.

But, you know, you can also turn that around.

If SETI succeeds in detecting a signal in the near future,

after examining only a small portion

of the stars in the Milky Way,

then we learn that

L, on average, must be large.

Otherwise, we couldn’t have succeeded so easily.

A physicist named Philip Morrison

summarizes by saying

that SETI is the archaeology of the future.

By this, he meant that

because the speed of light is finite,

any signals detected from distant technologies

will be telling us about their past

by the time they reach us.

But because L must be large

for a successful detection,

we also learn about our future,

particularly that we can have a long future.

We’ve developed technologies that can send signals into space

and humans to the moon,

but we’ve also developed technologies that can destroy the environment,

that can wage war

with weapons and biological terrorism.

In the future,

will our technology help stabilize our planet

and our population,

leading to a very long lifetime for us?

Or will we destroy our world and its inhabitants

after only a brief appearance on the cosmic stage?

I encourage you to consider

the unknowns in this equation.

Why don’t you make your own estimates

for these unknowns, and see what you come up with for N?

Compare that with the estimates made by Frank Drake,

Carl Sagan, other scientists

or your neighbors.

Remember, there’s no right answer.

Not yet.

抄写员:Ido Dekkers
审稿人:Ariana Bleau Lugo

(音乐

) 基本问题是,地球以外是否存在生命?

被称为天体生物学家的科学家们

现在正试图找出答案。

大多数天体生物学家正试图弄清楚

火星

上、木星卫星欧罗巴冰冻表面下的海洋中,或者

我们在土星卫星泰坦上发现的液态碳氢化合物湖中是否存在微生物生命。

但是一组天体生物学家致力于 SETI。

SETI 是外星智能的搜索

,SETI 研究人员正试图检测一些证据

,证明其他地方的智能生物

已经使用技术构建了某种发射器。

但他们设法找到信号的可能性有多大?

对于 SETI,当然没有任何保证,但是

以弗兰克·德雷克 (Frank Drake) 的名字命名的德雷克方程

可以帮助我们组织思考

成功检测可能需要什么。

如果你以前处理过方程,

那么你可能会

期望方程会有一个解,

一个正确的答案。

然而,德雷克方程是不同的,

因为有很多未知数。

它没有正确的答案。

当我们更多地了解我们的宇宙

和我们在其中的位置时,

一些未知数会

变得更好,我们可以更好地估计答案。

但在

SETI 成功

或其他东西证明

地球人是我们这部分宇宙中唯一的智慧物种之前,德雷克方程不会有明确的答案。

同时,

考虑未知数确实很有用。

德雷克方程试图估计银河系

中技术文明的数量

——我们称之为

N——我们可以接触到的人

,它通常写成:

N 等于 R-star

乘以 f-sub-p

乘以 乘以 n-sub-e

乘以 f-sub-l

乘以 f-sub-i

乘以 f-sub-

c 最后乘以资本 L。

所有这些因素相乘

有助于估计我们所

拥有的技术文明的数量

或许现在就可以检测到。

R-star 是过去数十亿

年银河系中恒星诞生的速度

所以它是每年的恒星数量。

我们的银河系已有 100 亿年的历史

,在其历史早期,恒星以不同的速度形成。

所有的 f 因子都是分数。

每个必须小于或等于 1。

F-sub-p 是拥有行星的恒星的比例。

N-sub-e

是任何行星系统中可居住行星的平均数量

F-sub-l

是生命实际开始的行星的一部分,

而 f-sub-i 是所有那些发展智能的生命形式的一部分

F-sub-c 是智能生命

中发展

出决定使用某种传输技术的文明的部分。

最后,

L——寿命因素。

平均而言,

这些发射机继续运行多少年?

天文学家现在几乎

能够告诉我们前三个术语的乘积是什么。

我们现在几乎到处都能找到系外行星。

涉及生命、智能

和技术

文明的部分是许多专家思考的部分,

但没有人确切知道。

到目前为止,

我们只知道宇宙中存在生命的一个地方

,那就是地球上。

在接下来的几十年里,

随着我们探索火星、欧罗巴和泰坦,

在那里发现任何一种生命

都将意味着银河系中的生命将十分丰富

因为如果生命

在这个太阳系内两次起源,

这意味着它很容易,

并且在其他地方类似的条件下,

生命将会发生。

所以数字二在这里是一个非常重要的数字。

包括 SETI 研究人员在内的科学家

通常倾向于做出非常粗略的估计,

并承认这些估计存在很大的

不确定性,以便取得进展。

我们认为我们

知道 R-star 和 n-sub-e 都是

比 1 更接近 10 的数字,

并且所有 f 因子都小于 1。

其中一些可能远小于一个。

但在所有这些未知数中

,最大的未知数是 L,

所以也许最有用的 Drake 方程版本

就是简单地说

N 大约等于 L。

这个方程中的信息非常清楚。

除非 L 很大,否则

N 会很小。

但是,你知道,你也可以扭转局面。

如果 SETI 在不久的将来成功探测到一个信号,

在只检查

了银河系中一小部分恒星之后,

那么我们知道

L 平均来说一定很大。

否则,我们不可能如此轻易地成功。

一位名叫菲利普莫里森的物理学家

总结说

,SETI 是未来的考古学。

他的意思是,

由于光速是有限的,

从遥远的技术检测到的任何信号

都会在

它们到达我们时告诉我们它们的过去。

但是因为 L 必须很大

才能成功检测,所以

我们也了解我们的未来,

特别是我们可以有一个很长的未来。

我们开发了可以将信号发送到太空

并将人类发送到月球的技术,

但我们也开发了可以破坏环境的技术,可以

用武器和生物恐怖主义发动战争。

未来

,我们的技术会帮助我们稳定地球

和人口,

从而延长我们的寿命吗?

或者我们会

在宇宙舞台上短暂出现后摧毁我们的世界及其居民?

我鼓励你考虑

这个等式中的未知数。

你为什么不对这些未知数做出自己的估计

,看看你对 N 得出了什么?

将其与弗兰克·德雷克、

卡尔·萨根、其他科学家

或您的邻居所做的估计进行比较。

请记住,没有正确的答案。

还没有。