How does an atomsmashing particle accelerator work Don Lincoln

Transcriber: Andrea McDonough
Reviewer: Bedirhan Cinar

One of the grandest scientific tools ever made by mankind

is called an atom smasher.

And I mean literally grand.

The biggest one ever built,

the Large Hadron Collider, or LHC,

is a ring with a circumference of about 18 miles.

That’s more than the entire length of Manhattan.

So what is an atom smasher?

It is a device that collides atomic nuclei together

at extremely high energy.

The most powerful one scientists have ever built

can heat matter to the hottest temperatures ever achieved,

temperatures last seen at a trillionth of second

after the universe began.

Our accelerators are full of engineering superlatives.

The beam-containing region of the LHC is a vacuum,

with lower pressure than what surrounds

the international space station,

and is 456 degrees Fahrenheit below zero,

colder than the temperature of deepest space.

A previous accelerator sitting in the LHC tunnel

holds the world record for velocity,

accelerating an electron to a speed so fast

that if it were to race a photon of light,

it would take about 14 minutes for the photon

to get a lead of about 10 feet.

If that doesn’t impress you,

remember the photon is fastest thing in the universe,

it goes about 186,000 miles per second.

So how do these subatomic particle accelerators work?

Well, they use electric fields.

Electric fields make charged particles move in the same way

that gravity will pull a dropped baseball.

The force from the electric field

will pull a particle to make it move.

The speed will continue to increase

until the charged particle is moving incredibly fast.

A simple particle accelerator can be made

by hooking two parallel metal plates to a battery.

The charge from the battery moves

on to the two metal plates

and makes an electric field that pulls the particle along.

And that’s it,

you got a particle accelerator.

The problem is that an accelerator built this way is very weak.

Building a modern accelerator like the LHC this way

would take over five trillion standard D-cell batteries.

So scientists use much stronger batteries

and put them one after another.

An earlier accelerator used this method

and was about a mile long

and was equivalent to 30 billion batteries.

However, to make an accelerator

that is equivalent to five trillion batteries

would require an accelerator 150 miles long.

Scientists needed another way.

While electric fields would make a particle go faster,

magnetic fields make them move in a circular path.

If you put an electric field along the circle,

you don’t need to use miles of electric fields,

you can use a single electric field over and over again.

The beams go around the circle,

and each time they gain more energy.

So very high-energy accelerators consist of

a short region with accelerating electric fields,

combined with long series of magnets

that guide the particles in a circle.

The strength of the magnets

and the radius of the circular path

determines the maximum energy of the beam.

Once the beam is zooming along,

then the real fun begins,

the smashing.

The reason physicists want to get

those particles moving so fast

is so that they can slam them into one another.

These collisions can teach us

about the fundamental rules that govern matter,

but they’d be impossible without the feat of engineering

that is the particle accelerator.

抄写员:Andrea McDonough
审稿人:Bedirhan Cinar

人类有史以来最伟大的科学工具之一

被称为原子粉碎机。

我的意思是字面意义上的宏伟。

有史以来最大的一个,

大型强子对撞机,或 LHC,

是一个周长约 18 英里的环。

这比曼哈顿的整个长度还要多。

那么什么是原子粉碎机?

它是一种以极高能量将原子核碰撞在一起的装置

科学家们建造的最强大的一个

可以将物质加热到有史以来最热的温度,

上一次出现的温度是

在宇宙开始后的万亿分之一秒。

我们的加速器充满了工程最高级。

大型强子对撞机的包含光束的区域是真空

,压力低于

国际空间站周围的区域

,温度低于零 456 华氏度,

比最深处的空间温度还要低。

先前位于 LHC 隧道中的加速器

保持着速度的世界纪录,

将电子加速到如此之快的速度

,以至于如果它要与光子赛跑,

光子大约需要 14 分钟

才能领先大约 10 脚。

如果这不让你印象深刻,

请记住光子是宇宙中最快的东西,

它每秒行进约 186,000 英里。

那么这些亚原子粒子加速器是如何工作的呢?

好吧,他们使用电场。

电场使带电粒子以与

重力拉动掉落的棒球相同的方式运动。

来自电场的力

将拉动一个粒子使其移动。

速度将继续增加,

直到带电粒子移动得非常快。

一个简单的粒子加速器可以

通过将两个平行的金属板连接到电池上来制作。

来自电池的电荷

移动到两个金属板上,

并产生一个电场,将粒子拉走。

就是这样,

你有一个粒子加速器。

问题在于以这种方式构建的加速器非常弱。

以这种方式建造像大型强子对撞机这样的现代加速器

将需要超过 5 万亿个标准 D 电池。

因此,科学家们使用更强大的电池

,并将它们一个接一个地放置。

早期的加速器采用这种方法

,长约一英里

,相当于 300 亿个电池。

然而,要制造一个

相当于 5 万亿个电池的

加速器,需要一个 150 英里长的加速器。

科学家们需要另一种方法。

虽然电场会使粒子运动得更快,但

磁场会使它们沿圆形路径移动。

如果沿着圆圈放置一个电场,

则不需要使用数英里的电场,

可以一遍又一遍地使用单个电场。

光束绕着圆圈转

,每次它们都会获得更多能量。

因此,非常高能的加速器由

一个带有加速电场的短区域组成,

并结合了长系列的磁铁

,这些磁铁将粒子引导成一个圆圈。

磁铁的强度

和圆形路径的半径

决定了光束的最大能量。

一旦光束放大

,真正的乐趣就开始了

,粉碎。

物理学家想让

这些粒子运动得如此之快的原因

是为了让它们可以相互撞击。

这些碰撞可以告诉我们

支配物质的基本规则,

但如果没有粒子加速器这一工程壮举,它们就不可能实现