How does your smartphone know your location Wilton L. Virgo

How does your smartphone
know exactly where you are?

The answer lies 12,000 miles
over your head

in an orbiting satellite that keeps time
to the beat of an atomic clock

powered by quantum mechanics.

Phew.

Let’s break that down.

First of all, why is it so important
to know what time it is on a satellite

when location is what
we’re concerned about?

The first thing
your phone needs to determine

is how far it is from a satellite.

Each satellite constantly
broadcasts radio signals

that travel from space to your phone
at the speed of light.

Your phone records
the signal arrival time

and uses it to calculate
the distance to the satellite

using the simple formula,
distance = c x time,

where c is the speed of light
and time is how long the signal traveled.

But there’s a problem.

Light is incredibly fast.

If we were only able to calculate
time to the nearest second,

every location on Earth, and far beyond,

would seem to be the same
distance from the satellite.

So in order to calculate that distance
to within a few dozen feet,

we need the best clock ever invented.

Enter atomic clocks,
some of which are so precise

that they would not gain or lose a second

even if they ran
for the next 300 million years.

Atomic clocks work
because of quantum physics.

All clocks must have a constant frequency.

In other words, a clock must carry out
some repetitive action

to mark off equivalent increments of time.

Just as a grandfather clock
relies on the constant swinging

back and forth of a pendulum
under gravity,

the tick tock of an atomic clock

is maintained by the transition
between two energy levels of an atom.

This is where quantum physics
comes into play.

Quantum mechanics
says that atoms carry energy,

but they can’t take on
just any arbitrary amount.

Instead, atomic energy
is constrained to a precise set of levels.

We call these quanta.

As a simple analogy,
think about driving a car onto a freeway.

As you increase your speed,

you would normally continuously go
from, say, 20 miles/hour up to 70 miles/hour.

Now, if you had a quantum atomic car,

you wouldn’t accelerate
in a linear fashion.

Instead, you would instantaneously jump,
or transition, from one speed to the next.

For an atom, when a transition
occurs from one energy level to another,

quantum mechanics says

that the energy difference
is equal to a characteristic frequency,

multiplied by a constant,

where the change in energy is equal to
a number, called Planck’s constant,

times the frequency.

That characteristic frequency
is what we need to make our clock.

GPS satellites rely on cesium and rubidium
atoms as frequency standards.

In the case of cesium 133,

the characteristic clock frequency
is 9,192,631,770 Hz.

That’s 9 billion cycles per second.

That’s a really fast clock.

No matter how skilled a clockmaker may be,

every pendulum, wind-up mechanism

and quartz crystal resonates
at a slightly different frequency.

However, every cesium 133 atom
in the universe

oscillates at the same exact frequency.

So thanks to the atomic clock,

we get a time reading accurate
to within 1 billionth of a second,

and a very precise measurement
of the distance from that satellite.

Let’s ignore the fact that you’re almost
definitely on Earth.

We now know that you’re at a fixed
distance from the satellite.

In other words, you’re somewhere
on the surface of a sphere

centered around the satellite.

Measure your distance
from a second satellite

and you get another overlapping sphere.

Keep doing that,

and with just four measurements,

and a little correction
using Einstein’s theory of relativity,

you can pinpoint your location to exactly
one point in space.

So that’s all it takes:

a multibillion-dollar
network of satellites,

oscillating cesium atoms,

quantum mechanics,

relativity,

a smartphone,

and you.

No problem.

您的智能手机如何
准确地知道您在哪里?

答案就在你头顶 12,000 英里处

的一颗轨道卫星上,它可以让时间

由量子力学驱动的原子钟的节拍保持一致。

呸。

让我们分解一下。

首先,当我们关心位置时,为什么
知道卫星上的时间如此重要

您的手机需要确定的第一

件事是距离卫星有多远。

每颗卫星都在不断地
广播无线电信号

,这些无线电信号以光速从太空传输到您的手机

您的手机会
记录信号到达时间,

并使用简单的公式计算
到卫星的距离


距离 = c x 时间,

其中 c 是光速
,时间是信号传播的时间。

但是有一个问题。

光的速度非常快。

如果我们只能将
时间计算到最接近的

秒数,那么地球上的每个位置,甚至更远的地方,

似乎
与卫星的距离都是相同的。

因此,为了计算
出几十英尺以内的距离,

我们需要有史以来最好的时钟。

进入原子钟,
其中一些非常精确

即使它们运行
了接下来的 3 亿年,它们也不会增加或减少一秒。

原子钟的工作
是因为量子物理学。

所有时钟必须具有恒定频率。

换句话说,时钟必须执行
一些重复动作

来标记时间的等效增量。

就像落地钟
依靠

钟摆
在重力作用下不断来回摆动一样,

原子钟的滴答声

是由
原子的两个能级之间的跃迁维持的。

这就是量子
物理学发挥作用的地方。

量子力学
说原子携带能量,

但它们
不能任意携带。

相反,原子能
被限制在一组精确的水平上。

我们称这些量子。

作为一个简单的类比,
考虑将汽车开到高速公路上。

当您提高速度时,

您通常会不断
地从 20 英里/小时提高到 70 英里/小时。

现在,如果你有一辆量子原子汽车,

你就不会
以线性方式加速。

相反,您会立即
从一种速度跳跃或过渡到另一种速度。

对于一个原子,
当从一个能级跃迁到另一个能级时,

量子力学

说能量差
等于一个特征频率

乘以一个常数,

其中能量的变化等于
一个数,称为普朗克常数,

乘以 频率。

该特征频率
是我们制作时钟所需的。

GPS卫星依靠铯和铷
原子作为频率标准。

在铯 133 的情况下

,特征时钟频率
为 9,192,631,770 Hz。

那是每秒 90 亿次循环。

那是一个非常快的时钟。

无论钟表匠多么熟练,

每个钟摆、上链机构

和石英晶体都会
以略微不同的频率共振。

然而,宇宙中的每个铯 133 原子都

以相同的精确频率振荡。

因此,多亏了原子钟,

我们的时间读数精确
到十亿分之一秒,

并且非常精确地测量
了与该卫星的距离。

让我们忽略你几乎
肯定在地球上的事实。

我们现在知道你
与卫星的距离是固定的。

换句话说,你在以卫星为中心
的球体表面上的某个地方

测量你
与第二颗卫星的距离

,你会得到另一个重叠的球体。

继续这样做,

只需四次测量,并

使用爱因斯坦的相对论进行一点修正,

您就可以将您的位置精确定位
到空间中的一个点。

这就是它所需要的:

价值数十亿美元
的卫星网络、

振荡的铯原子、

量子力学、

相对论

、智能手机

和你。

没问题。