Jeff Dean AI isnt as smart as you think but it could be TED

Hi, I’m Jeff.

I lead AI Research and Health at Google.

I joined Google more than 20 years ago,

when we were all wedged
into a tiny office space,

above what’s now a T-Mobile store
in downtown Palo Alto.

I’ve seen a lot of computing
transformations in that time,

and in the last decade, we’ve seen AI
be able to do tremendous things.

But we’re still doing it
all wrong in many ways.

That’s what I want
to talk to you about today.

But first, let’s talk
about what AI can do.

So in the last decade,
we’ve seen tremendous progress

in how AI can help computers see,
understand language,

understand speech better than ever before.

Things that we couldn’t do
before, now we can do.

If you think about computer vision alone,

just in the last 10 years,

computers have effectively
developed the ability to see;

10 years ago, they couldn’t see,
now they can see.

You can imagine this has had
a transformative effect

on what we can do with computers.

So let’s look at a couple
of the great applications

enabled by these capabilities.

We can better predict flooding,
keep everyone safe,

using machine learning.

We can translate over 100 languages
so we all can communicate better,

and better predict and diagnose disease,

where everyone gets
the treatment that they need.

So let’s look at two key components

that underlie the progress
in AI systems today.

The first is neural networks,

a breakthrough approach to solving
some of these difficult problems

that has really shone
in the last 15 years.

But they’re not a new idea.

And the second is computational power.

It actually takes a lot
of computational power

to make neural networks
able to really sing,

and in the last 15 years,
we’ve been able to halve that,

and that’s partly what’s enabled
all this progress.

But at the same time,
I think we’re doing several things wrong,

and that’s what I want
to talk to you about

at the end of the talk.

First, a bit of a history lesson.

So for decades,

almost since the very
beginning of computing,

people have wanted
to be able to build computers

that could see, understand language,
understand speech.

The earliest approaches
to this, generally,

people were trying to hand-code
all the algorithms

that you need to accomplish
those difficult tasks,

and it just turned out
to not work very well.

But in the last 15 years,
a single approach

unexpectedly advanced all these different
problem spaces all at once:

neural networks.

So neural networks are not a new idea.

They’re kind of loosely based

on some of the properties
that are in real neural systems.

And many of the ideas
behind neural networks

have been around since the 1960s and 70s.

A neural network is what it sounds like,

a series of interconnected
artificial neurons

that loosely emulate the properties
of your real neurons.

An individual neuron
in one of these systems

has a set of inputs,

each with an associated weight,

and the output of a neuron

is a function of those inputs
multiplied by those weights.

So pretty simple,

and lots and lots of these work together
to learn complicated things.

So how do we actually learn
in a neural network?

It turns out the learning process

consists of repeatedly making
tiny little adjustments

to the weight values,

strengthening the influence
of some things,

weakening the influence of others.

By driving the overall system
towards desired behaviors,

these systems can be trained
to do really complicated things,

like translate
from one language to another,

detect what kind
of objects are in a photo,

all kinds of complicated things.

I first got interested in neural networks

when I took a class on them
as an undergraduate in 1990.

At that time,

neural networks showed
impressive results on tiny problems,

but they really couldn’t scale to do
real-world important tasks.

But I was super excited.

(Laughter)

I felt maybe we just needed
more compute power.

And the University of Minnesota
had a 32-processor machine.

I thought, “With more compute power,

boy, we could really make
neural networks really sing.”

So I decided to do a senior thesis
on parallel training of neural networks,

the idea of using processors in a computer
or in a computer system

to all work toward the same task,

that of training neural networks.

32 processors, wow,

we’ve got to be able
to do great things with this.

But I was wrong.

Turns out we needed about a million times
as much computational power

as we had in 1990

before we could actually get
neural networks to do impressive things.

But starting around 2005,

thanks to the computing progress
of Moore’s law,

we actually started to have
that much computing power,

and researchers in a few universities
around the world started to see success

in using neural networks for a wide
variety of different kinds of tasks.

I and a few others at Google
heard about some of these successes,

and we decided to start a project
to train very large neural networks.

One system that we trained,

we trained with 10 million
randomly selected frames

from YouTube videos.

The system developed the capability

to recognize all kinds
of different objects.

And it being YouTube, of course,

it developed the ability
to recognize cats.

YouTube is full of cats.

(Laughter)

But what made that so remarkable

is that the system was never told
what a cat was.

So using just patterns in data,

the system honed in on the concept
of a cat all on its own.

All of this occurred at the beginning
of a decade-long string of successes,

of using neural networks
for a huge variety of tasks,

at Google and elsewhere.

Many of the things you use every day,

things like better speech
recognition for your phone,

improved understanding
of queries and documents

for better search quality,

better understanding of geographic
information to improve maps,

and so on.

Around that time,

we also got excited about how we could
build hardware that was better tailored

to the kinds of computations
neural networks wanted to do.

Neural network computations
have two special properties.

The first is they’re very tolerant
of reduced precision.

Couple of significant digits,
you don’t need six or seven.

And the second is that all the
algorithms are generally composed

of different sequences
of matrix and vector operations.

So if you can build a computer

that is really good at low-precision
matrix and vector operations

but can’t do much else,

that’s going to be great
for neural-network computation,

even though you can’t use it
for a lot of other things.

And if you build such things,
people will find amazing uses for them.

This is the first one we built, TPU v1.

“TPU” stands for Tensor Processing Unit.

These have been used for many years
behind every Google search,

for translation,

in the DeepMind AlphaGo matches,

so Lee Sedol and Ke Jie
maybe didn’t realize,

but they were competing
against racks of TPU cards.

And we’ve built a bunch
of subsequent versions of TPUs

that are even better and more exciting.

But despite all these successes,

I think we’re still doing
many things wrong,

and I’ll tell you about three
key things we’re doing wrong,

and how we’ll fix them.

The first is that most
neural networks today

are trained to do one thing,
and one thing only.

You train it for a particular task
that you might care deeply about,

but it’s a pretty heavyweight activity.

You need to curate a data set,

you need to decide
what network architecture you’ll use

for this problem,

you need to initialize the weights
with random values,

apply lots of computation
to make adjustments to the weights.

And at the end, if you’re lucky,
you end up with a model

that is really good
at that task you care about.

But if you do this over and over,

you end up with thousands
of separate models,

each perhaps very capable,

but separate for all the different
tasks you care about.

But think about how people learn.

In the last year, many of us
have picked up a bunch of new skills.

I’ve been honing my gardening skills,

experimenting with vertical
hydroponic gardening.

To do that, I didn’t need to relearn
everything I already knew about plants.

I was able to know
how to put a plant in a hole,

how to pour water, that plants need sun,

and leverage that
in learning this new skill.

Computers can work
the same way, but they don’t today.

If you train a neural
network from scratch,

it’s effectively like forgetting
your entire education

every time you try to do something new.

That’s crazy, right?

So instead, I think we can
and should be training

multitask models that can do
thousands or millions of different tasks.

Each part of that model would specialize
in different kinds of things.

And then, if we have a model
that can do a thousand things,

and the thousand and first
thing comes along,

we can leverage
the expertise we already have

in the related kinds of things

so that we can more quickly be able
to do this new task,

just like you, if you’re confronted
with some new problem,

you quickly identify
the 17 things you already know

that are going to be helpful
in solving that problem.

Second problem is that most
of our models today

deal with only a single
modality of data –

with images, or text or speech,

but not all of these all at once.

But think about how you
go about the world.

You’re continuously using all your senses

to learn from, react to,

figure out what actions
you want to take in the world.

Makes a lot more sense to do that,

and we can build models in the same way.

We can build models that take in
these different modalities of input data,

text, images, speech,

but then fuse them together,

so that regardless of whether the model
sees the word “leopard,”

sees a video of a leopard
or hears someone say the word “leopard,”

the same response
is triggered inside the model:

the concept of a leopard

can deal with different
kinds of input data,

even nonhuman inputs,
like genetic sequences,

3D clouds of points,
as well as images, text and video.

The third problem
is that today’s models are dense.

There’s a single model,

the model is fully activated
for every task,

for every example
that we want to accomplish,

whether that’s a really simple
or a really complicated thing.

This, too, is unlike
how our own brains work.

Different parts of our brains
are good at different things,

and we’re continuously calling
upon the pieces of them

that are relevant for the task at hand.

For example, nervously watching
a garbage truck

back up towards your car,

the part of your brain that thinks
about Shakespearean sonnets

is probably inactive.

(Laughter)

AI models can work the same way.

Instead of a dense model,

we can have one
that is sparsely activated.

So for particular different tasks,
we call upon different parts of the model.

During training, the model can also learn
which parts are good at which things,

to continuously identify what parts
it wants to call upon

in order to accomplish a new task.

The advantage of this is we can have
a very high-capacity model,

but it’s very efficient,

because we’re only calling
upon the parts that we need

for any given task.

So fixing these three things, I think,

will lead to a more powerful AI system:

instead of thousands of separate models,

train a handful of general-purpose models

that can do thousands
or millions of things.

Instead of dealing with single modalities,

deal with all modalities,

and be able to fuse them together.

And instead of dense models,
use sparse, high-capacity models,

where we call upon the relevant
bits as we need them.

We’ve been building a system
that enables these kinds of approaches,

and we’ve been calling
the system “Pathways.”

So the idea is this model
will be able to do

thousands or millions of different tasks,

and then, we can incrementally
add new tasks,

and it can deal
with all modalities at once,

and then incrementally learn
new tasks as needed

and call upon the relevant
bits of the model

for different examples or tasks.

And we’re pretty excited about this,

we think this is going
to be a step forward

in how we build AI systems.

But I also wanted
to touch on responsible AI.

We clearly need to make sure
that this vision of powerful AI systems

benefits everyone.

These kinds of models raise
important new questions

about how do we build them with fairness,

interpretability, privacy and security,

for all users in mind.

For example, if we’re going
to train these models

on thousands or millions of tasks,

we’ll need to be able to train them
on large amounts of data.

And we need to make sure that data
is thoughtfully collected

and is representative of different
communities and situations

all around the world.

And data concerns are only
one aspect of responsible AI.

We have a lot of work to do here.

So in 2018, Google published
this set of AI principles

by which we think about developing
these kinds of technology.

And these have helped guide us
in how we do research in this space,

how we use AI in our products.

And I think it’s a really helpful
and important framing

for how to think about these deep
and complex questions

about how we should
be using AI in society.

We continue to update these
as we learn more.

Many of these kinds of principles
are active areas of research –

super important area.

Moving from single-purpose systems
that kind of recognize patterns in data

to these kinds of general-purpose
intelligent systems

that have a deeper
understanding of the world

will really enable us to tackle

some of the greatest problems
humanity faces.

For example,

we’ll be able to diagnose more disease;

we’ll be able to engineer better medicines

by infusing these models
with knowledge of chemistry and physics;

we’ll be able to advance
educational systems

by providing more individualized tutoring

to help people learn
in new and better ways;

we’ll be able to tackle
really complicated issues,

like climate change,

and perhaps engineering
of clean energy solutions.

So really, all of these kinds of systems

are going to be requiring
the multidisciplinary expertise

of people all over the world.

So connecting AI
with whatever field you are in,

in order to make progress.

So I’ve seen a lot
of advances in computing,

and how computing, over the past decades,

has really helped millions of people
better understand the world around them.

And AI today has the potential
to help billions of people.

We truly live in exciting times.

Thank you.

(Applause)

Chris Anderson: Thank you so much.

I want to follow up on a couple things.

This is what I heard.

Most people’s traditional picture of AI

is that computers recognize
a pattern of information,

and with a bit of machine learning,

they can get really good at that,
better than humans.

What you’re saying is those patterns

are no longer the atoms
that AI is working with,

that it’s much richer-layered concepts

that can include all manners
of types of things

that go to make up a leopard, for example.

So what could that lead to?

Give me an example
of when that AI is working,

what do you picture happening in the world

in the next five or 10 years
that excites you?

Jeff Dean: I think
the grand challenge in AI

is how do you generalize
from a set of tasks

you already know how to do

to new tasks,

as easily and effortlessly as possible.

And the current approach of training
separate models for everything

means you need lots of data
about that particular problem,

because you’re effectively trying
to learn everything

about the world
and that problem, from nothing.

But if you can build these systems

that already are infused with how to do
thousands and millions of tasks,

then you can effectively
teach them to do a new thing

with relatively few examples.

So I think that’s the real hope,

that you could then have a system
where you just give it five examples

of something you care about,

and it learns to do that new task.

CA: You can do a form
of self-supervised learning

that is based on remarkably
little seeding.

JD: Yeah, as opposed to needing
10,000 or 100,000 examples

to figure everything in the world out.

CA: Aren’t there kind of terrifying
unintended consequences

possible, from that?

JD: I think it depends
on how you apply these systems.

It’s very clear that AI
can be a powerful system for good,

or if you apply it in ways
that are not so great,

it can be a negative consequence.

So I think that’s why it’s important
to have a set of principles

by which you look at potential uses of AI

and really are careful and thoughtful
about how you consider applications.

CA: One of the things
people worry most about

is that, if AI is so good at learning
from the world as it is,

it’s going to carry forward
into the future

aspects of the world as it is
that actually aren’t right, right now.

And there’s obviously been
a huge controversy about that

recently at Google.

Some of those principles
of AI development,

you’ve been challenged that you’re not
actually holding to them.

Not really interested to hear
about comments on a specific case,

but … are you really committed?

How do we know that you are
committed to these principles?

Is that just PR, or is that real,
at the heart of your day-to-day?

JD: No, that is absolutely real.

Like, we have literally hundreds of people

working on many of these
related research issues,

because many of those
things are research topics

in their own right.

How do you take data from the real world,

that is the world as it is,
not as we would like it to be,

and how do you then use that
to train a machine-learning model

and adapt the data bit of the scene

or augment the data with additional data

so that it can better reflect
the values we want the system to have,

not the values that it sees in the world?

CA: But you work for Google,

Google is funding the research.

How do we know that the main values
that this AI will build

are for the world,

and not, for example, to maximize
the profitability of an ad model?

When you know everything
there is to know about human attention,

you’re going to know so much

about the little wriggly,
weird, dark parts of us.

In your group, are there rules
about how you hold off,

church-state wall
between a sort of commercial push,

“You must do it for this purpose,”

so that you can inspire
your engineers and so forth,

to do this for the world, for all of us.

JD: Yeah, our research group
does collaborate

with a number of groups across Google,

including the Ads group,
the Search group, the Maps group,

so we do have some collaboration,
but also a lot of basic research

that we publish openly.

We’ve published more
than 1,000 papers last year

in different topics,
including the ones you discussed,

about fairness, interpretability
of the machine-learning models,

things that are super important,

and we need to advance
the state of the art in this

in order to continue to make progress

to make sure these models
are developed safely and responsibly.

CA: It feels like we’re at a time
when people are concerned

about the power of the big tech companies,

and it’s almost, if there was ever
a moment to really show the world

that this is being done
to make a better future,

that is actually key to Google’s future,

as well as all of ours.

JD: Indeed.

CA: It’s very good to hear you
come and say that, Jeff.

Thank you so much for coming here to TED.

JD: Thank you.

(Applause)

嗨,我是杰夫。

我在谷歌领导人工智能研究和健康。

20 多年前,我加入了谷歌,

当时我们都挤
在一个狭小的办公空间里,就

在现在帕洛阿尔托市中心的 T-Mobile 商店上面

在那段时间里,我看到了很多计算转型,

在过去的十年里,我们看到人工智能
能够做很多事情。

但是我们
在很多方面仍然做错了。

这就是我
今天想和你谈谈的。

但首先,让我们
谈谈人工智能可以做什么。

因此,在过去十年中,
我们已经看到

人工智能如何帮助计算机比以往更好地看、
理解语言和

理解语音方面取得了巨大进步。 以前

做不到的事情
,现在可以做。

如果仅考虑计算机视觉,

就在最近 10 年,

计算机有效地
发展了视觉能力;

10年前他们看不到,
现在他们可以看到了。

你可以想象这

对我们可以用计算机做的事情产生了变革性的影响。

因此,让我们看一下这些功能支持的
几个出色的应用程序

。 使用机器学习

,我们可以更好地预测洪水
,确保每个人的安全

我们可以翻译 100 多种语言,
因此我们都可以更好地沟通,

更好地预测和诊断疾病

,每个人都能得到
他们需要的治疗。

因此,让我们看

一下构成
当今人工智能系统进步的两个关键组成部分。

第一个是神经网络,它

是解决

过去 15 年来真正大放异彩的一些难题的突破性方法。

但它们并不是一个新想法。

第二个是计算能力。

实际上

,要使神经网络
能够真正唱歌,实际上需要大量的计算能力,

而在过去的 15 年中,
我们已经能够将其减半

,这部分是促成
所有这些进步的原因。

但与此同时,
我认为我们做错了几件事

,这就是我想

演讲结束时与您讨论的内容。

首先,有一点历史课。

所以几十年来,

几乎从
计算机诞生之初,

人们就希望
能够制造

出能够看、理解语言、
理解语音的计算机。

通常,最早的方法

是尝试手动编写

完成
这些困难任务所需的所有算法

,但结果
证明效果不佳。

但在过去的 15 年中,
一种方法

出人意料地同时推进了所有这些不同的
问题空间:

神经网络。

所以神经网络并不是一个新想法。

它们有点松散地基于

真实神经系统中的一些属性。

神经网络背后的许多想法

自 1960 年代和 70 年代以来就已经存在。

神经网络就是听起来的样子,

一系列相互连接的
人工神经元

,松散地模拟
真实神经元的特性。 其中

一个系统中的单个神经元

具有一组输入,

每个输入都有一个相关的权重

,神经元的输出

是这些输入
乘以这些权重的函数。

非常简单

,很多很多的东西一起工作
来学习复杂的东西。

那么我们如何
在神经网络中实际学习呢?

事实证明,学习过程

包括反复

对权重值进行微小的调整,

加强
某些事物

的影响,削弱其他事物的影响。

通过将整个系统驱动
到期望的行为,

这些系统可以被训练
来做非常复杂的事情,

比如
从一种语言翻译成另一种语言,

检测
照片中的物体

类型,以及各种复杂的事情。

我第一次对神经网络感兴趣是

在 1990 年我还是一名本科生的时候。

当时,

神经网络
在小问题上显示出令人印象深刻的结果,

但它们确实无法扩展到完成
现实世界的重要任务。

但我超级兴奋。

(笑声)

我觉得也许我们只是需要
更多的计算能力。

明尼苏达大学
有一台 32 处理器的机器。

我想,“有了更多的计算能力,

男孩,我们真的可以让
神经网络真正唱歌。”

所以我决定写一篇
关于神经网络并行训练的高级论文,

这个想法是在计算机
或计算机系统

中使用处理器来完成相同的任务,

即训练神经网络。

32 个处理器,哇,

我们必须能够
用它来做伟大的事情。

但是我错了。

事实证明

在我们真正让
神经网络做令人印象深刻的事情之前,我们需要的计算能力是 1990 年的一百万倍。

但从 2005 年左右开始,

由于
摩尔定律的计算进步,

我们实际上开始拥有
如此强大的计算能力,世界各地

一些大学的研究人员
开始看到成功

地将神经网络用于
各种不同类型的任务 .

我和谷歌的其他一些人
听说了其中的一些成功

,我们决定启动一个项目
来训练非常大的神经网络。

我们训练的一个系统是从 YouTube 视频中

随机选择的 1000 万帧进行训练的

该系统开发了

识别
各种不同对象的能力。

当然,它是 YouTube,

它开发
了识别猫的能力。

YouTube 上到处都是猫。

(笑声)

但是让这件事如此引人注目的

是,系统从未被告知
猫是什么。

因此,仅使用数据中的模式,

该系统就完全
掌握了猫的概念。

所有这一切都发生在
长达十年的一系列成功的开始

,即

在谷歌和其他地方使用神经网络完成各种各样的任务。

您每天使用的许多东西,

例如更好
的手机语音识别、

更好地
理解查询和文档

以提高搜索质量、

更好地理解地理
信息以改进地图

等等。

大约在那个时候,

我们也对如何
构建更适合神经网络

想要执行的计算类型的硬件感到兴奋

神经网络计算
有两个特殊属性。

首先是他们非常
容忍降低的精度。

几个有效数字,
您不需要六或七。

第二个是所有
算法通常

由不同
的矩阵和向量运算序列组成。

因此,如果您可以构建一

台非常擅长低精度
矩阵和向量运算

但不能做很多其他事情的计算机,

那将非常
适合神经网络计算,

即使您不能
在很多情况下使用它 其他事情。

如果你建造这样的东西,
人们会发现它们有惊人的用途。

这是我们构建的第一个,TPU v1。

“TPU”代表张量处理单元。

多年来,这些已经
在每次谷歌搜索

、翻译

、DeepMind AlphaGo 比赛中使用,

所以李世石和柯洁
可能没有意识到,

但他们正在
与成堆的 TPU 卡竞争。

我们已经构建了一系列

更好、更令人兴奋的 TPU 后续版本。

但是尽管取得了所有这些成功,

我认为我们仍然做错了
很多事情

,我将告诉你
我们做错的三个关键事情,

以及我们将如何解决它们。

首先是
今天的大多数神经网络

都被训练做一件事,
而且只做一件事。

您为一项您可能非常关心的特定任务训练它

但这是一项非常重量级的活动。

你需要管理一个数据集,

你需要决定
你将使用什么网络架构

来解决这个问题,

你需要用随机值初始化权重

应用大量计算
来调整权重。

最后,如果你幸运的话,
你最终会得到

一个非常
擅长你关心的任务的模型。

但是如果你一遍又一遍地这样做,

你最终会得到
数千个不同的模型,

每个模型可能都非常有能力,

但对于你关心的所有不同任务都是分开的

但是想想人们是如何学习的。

在过去的一年里,我们中的许多
人掌握了许多新技能。

我一直在磨练我的园艺技能,

尝试垂直
水培园艺。

要做到这一点,我不需要重新学习
我已经知道的关于植物的一切。

我能够知道
如何将植物放入洞中,

如何倒水,植物需要阳光,

并利用它
来学习这项新技能。

计算机可以
以同样的方式工作,但现在不行。

如果你从头开始训练一个神经
网络,

这实际上就像

每次你尝试做一些新的事情时都忘记了你的整个教育。

这太疯狂了,对吧?

所以相反,我认为我们可以
而且应该训练

可以完成
数千或数百万个不同任务的多任务模型。

该模型的每个部分都将专注
于不同种类的事物。

然后,如果我们有一个
可以做一千件事情的模型,

并且第一
件事情出现了,

我们就可以利用
我们

在相关事情上已经拥有的专业知识,

这样我们就可以更快
地完成这项新的事情 任务,

就像你一样,如果你
遇到一些新问题,

你会很快找出
你已经知道的 17 件事

,这将
有助于解决这个问题。

第二个问题是,
我们今天的大多数模型

只处理单一
形式的数据

——图像、文本或语音,

但并非同时处理所有这些。

但是想想你是
如何看待这个世界的。

你不断地用你所有的感官

来学习、反应、

弄清楚
你想在这个世界上采取什么行动。

这样做更有意义

,我们可以用同样的方式构建模型。

我们可以构建模型,接收
这些不同形式的输入数据、

文本、图像、语音

,然后将它们融合在一起,

这样无论模型是否
看到“豹”这个词,都能

看到豹的视频
或听到有人说 “豹”这个词

在模型内部触发了相同的响应:

豹的概念

可以处理不同
类型的输入数据,

甚至是非人类输入,
如基因序列、

3D 点云,
以及图像、文本和视频 .

第三个问题
是今天的模型很密集。

有一个模型,

该模型
对每个任务

、每个
我们想要完成的示例都完全激活,

无论是非常简单
还是非常复杂的事情。

这也不同于
我们自己的大脑如何工作。

我们大脑的不同部分
擅长不同的事情

,我们不断地调用

手头任务相关的部分。

例如,紧张地看着
一辆垃圾

车驶向你的汽车

,你大脑中
思考莎士比亚十四行诗

的部分可能是不活跃的。

(笑声)

人工智能模型可以以同样的方式工作。

我们可以
使用稀疏激活的模型来代替密集模型。

因此,对于特定的不同任务,
我们调用模型的不同部分。

在训练期间,模型还可以学习
哪些部分擅长哪些事情,

以不断识别
它想要调用哪些部分

以完成新任务。

这样做的好处是我们可以拥有
一个非常高容量的模型,

但它非常高效,

因为我们只调用

任何给定任务所需的部分。

因此,我认为修复这三件事

将导致一个更强大的 AI 系统:

而不是数千个单独的模型,而是

训练少数

可以做数千
或数百万件事情的通用模型。

与其处理单一模态,

不如处理所有模态,

并能够将它们融合在一起。

而不是密集模型,而是
使用稀疏、高容量的模型

,我们在
需要时调用相关位。

我们一直在构建一个
支持这些方法的系统

,我们一直称
该系统为“途径”。

所以这个想法是这个模型
将能够完成

数千或数百万个不同的任务,

然后,我们可以增量
添加新任务

,它可以同时
处理所有模态,

然后
根据需要增量学习新任务

并调用
模型的相关位

用于不同的示例或任务。

我们对此感到非常兴奋,

我们认为这将

是我们构建人工智能系统的一步。

但我也
想谈谈负责任的人工智能。

我们显然需要
确保强大的人工智能系统的愿景能够

惠及每个人。

这些类型的模型提出了
重要的新问题,即

我们如何

在考虑到所有用户的情况下,以公平、可解释、隐私和安全的方式构建它们。

例如,如果我们要

在数千或数百万个任务上训练这些模型,

我们将需要能够
在大量数据上训练它们。

我们需要确保数据
经过深思熟虑的收集

,并代表世界各地不同的
社区和情况

数据问题只是
负责任的人工智能的一个方面。

我们在这里有很多工作要做。

所以在 2018 年,谷歌发布了
这套 AI

原则,我们以此来思考开发
这类技术。

这些帮助指导
我们如何在这个领域进行研究,

如何在我们的产品中使用人工智能。

我认为这是一个非常有用
和重要的框架

,可以帮助我们思考这些

关于我们应该如何
在社会中使用人工智能的深刻而复杂的问题。 随着

我们了解更多,我们将继续更新这些
内容。

许多这类原则
都是活跃的研究领域——

超级重要的领域。


能够识别数据模式

的单一用途系统转变为对世界有更深入了解的通用
智能系统

将真正使我们能够解决

人类面临的一些最大问题。

例如,

我们将能够诊断出更多的疾病; 通过将化学和物理知识注入这些模型,

我们将能够设计出更好的药物

我们将能够

通过提供更加个性化的辅导

来帮助人们
以新的和更好的方式学习来推进教育系统;

我们将能够解决
非常复杂的问题,

比如气候变化

,也许还有
清洁能源解决方案的工程。

所以真的,所有这些类型的系统

都将
需要世界各地人们的多学科专业知识

因此,将 AI
与您所在的任何领域联系起来,

以取得进步。

所以我看到
了计算方面的许多进步,

以及在过去的几十年里,计算

如何真正帮助数百万人
更好地了解他们周围的世界。

今天的人工智能有
可能帮助数十亿人。

我们真的生活在激动人心的时代。

谢谢你。

(掌声)

克里斯·安德森:非常感谢。

我想跟进几件事。

这是我听到的。

大多数人对人工智能的传统看法

是计算机
识别信息模式

,通过一些机器学习,

他们可以在这方面做得很好,
比人类更好。

你要说的是,这些

模式不再
是 AI 正在使用的原子

,而是更丰富的概念

,可以包括构成豹子
的所有类型的事物

那么这会导致什么?

给我一个
例子,说明人工智能什么时候开始工作,

你认为

未来 5 年或 10 年世界上发生了什么
让你兴奋的事情?

Jeff Dean:我
认为 AI 的最大挑战

是如何尽可能轻松轻松地将
一组

你已经知道如何完成的任务概括

为新任务

而当前
为所有事物训练单独模型的

方法意味着您需要大量
有关该特定问题的数据,

因为您正在有效地尝试从无到有
地了解

有关世界
和该问题的所有信息。

但是,如果您可以构建这些

已经融入了如何完成
数以百万计的任务的系统,

那么您就可以通过相对较少的示例有效地
教他们做新的事情

所以我认为这是真正的希望

,然后你可以拥有一个系统
,你只需给它五个

你关心的事情的例子

,它就会学会完成这项新任务。

CA:你可以

进行一种基于非常
少的播种的自我监督学习。

JD:是的,而不是需要
10,000 或 100,000 个示例

来弄清楚世界上的一切。

CA:难道不会有什么可怕的
意外后果

吗?

JD:我认为这
取决于你如何应用这些系统。

很明显,人工智能
可以成为一个强大的系统,

或者如果你
以不太好的方式应用它,

它可能会产生负面影响。

所以我认为这就是为什么
有一套原则很重要

,你可以根据这些原则来看待人工智能的潜在用途,

并且
对你如何考虑应用程序非常谨慎和深思熟虑。

CA:人们最担心的一件事

是,如果 AI 如此擅长
从世界中学习,

它会继续发展

世界的未来各个方面,
这实际上是不对的,对 现在。

显然

最近在谷歌这方面存在巨大争议。

人工智能开发的一些原则,

你一直受到挑战,你
实际上并没有坚持它们。

不是很想听听
对特定案例的评论,

但是……你真的承诺了吗?

我们怎么知道您
致力于这些原则?

这只是公关,还是真实的,
是您日常工作的核心?

JD:不,那是绝对真实的。

就像,我们实际上有数百人

在研究许多
相关的研究问题,

因为其中许多
事情本身就是研究

课题。

您如何从现实世界中获取数据,

即世界
本来的样子,而不是我们希望的样子,

然后您如何使用它
来训练机器学习模型

并调整场景的数据位

或 用额外的数据扩充数据,

以便更好地反映
我们希望系统拥有

的价值,而不是它在世界上看到的价值?

CA:但你为谷歌工作,谷

歌正在资助这项研究。

我们怎么知道这个人工智能将建立的主要价值

是为世界服务的,

而不是为了最大化
广告模型的盈利能力?

当你
了解有关人类注意力的所有知识时,

你就会对我们身上

那些扭曲的、
怪异的、黑暗的部分了解很多。

在你的团队中,是否有
关于如何

在某种商业推动之间阻止政教合一的规则,

“你必须为此目的而这样做”,

这样你就可以激励
你的工程师等等,

为 世界,为了我们所有人。

JD:是的,我们的研究小组
确实

与谷歌的许多小组合作,

包括广告小组
、搜索小组、地图小组,

所以我们确实有一些合作,
但也有很多

我们公开发表的基础研究。

去年,我们在不同的主题上发表了 1000 多篇论文


包括你讨论的那些,

关于公平性、
机器学习模型的可解释性

,以及非常重要的事情

,我们需要
在这方面推进最先进的技术

为了继续取得进展

,以确保
安全和负责任地开发这些模型。

CA:感觉就像我们正处于
人们

关注大型科技公司的力量的时候,

几乎,如果
有一刻可以真正向世界

展示这样做是
为了创造更美好的未来,

这实际上是谷歌未来

以及我们所有人未来的关键。

JD:确实。

CA:很高兴听到
你这么说,杰夫。

非常感谢你来到 TED。

JD:谢谢。

(掌声)