Particles and waves The central mystery of quantum mechanics Chad Orzel

One of the most amazing facts
in physics is this:

everything in the universe, from light
to electrons to atoms,

behaves like both a particle and a wave
at the same time.

All of the other weird stuff you might
have heard about quantum physics,

Schrodinger’s Cat, God playing dice,
spooky action at a distance,

all of it follows directly from the fact

that everything has both
particle and wave nature.

This might sound crazy.

If you look around, you’ll see waves
in water and particles of rock,

and they’re nothing alike.

So why would you think to combine them?

Physicists didn’t just decide to mash
these things together out of no where.

Rather, they were led to
the dual nature of the universe

through a process of small steps,

fitting together lots of bits of evidence,
like pieces in a puzzle.

The first person to seriously
suggest the dual nature of light

was Albert Einstein in 1905,

but he was picking up an
earlier idea from Max Planck.

Planck explained the colors of light
emitted by hot objects,

like the filament in a light bulb,

but to do it, he needed a desperate trick:

he said the object was
made up of oscillators

that could only emit light
in discrete chunks,

units of energy that depend on
the frequency of the light.

Planck was never really happy with this,
but Einstein picked it up and ran with it.

He applied Planck’s idea to light itself,
saying that light,

which everybody knew was a wave,
is really a stream of photons,

each with a discrete amount of energy.

Einstein himself called this
the only truly revolutionary thing he did,

but it explains the way light shining on
a metal surface knocks loose electrons.

Even people who hated the idea
had to agree that it works brilliantly.

The next puzzle piece came from
Ernest Rutherford in England.

In 1909, Ernest Marsden and Hans Geiger,
working for Rutherford,

shot alpha particles at gold atoms

and were stunned to find that some
bounced straight backwards.

This showed that most of the mass of the
atom is concentrated in a tiny nucleus.

The cartoon atom you learn
in grade school,

with electrons orbiting
like a miniature solar system,

that’s Rutherford’s.

There’s one little problem with
Rutherford’s atom: it can’t work.

Classical physics tells us
that an electron

whipping around in a circle emits light,

and we use this all the time
to generate radio waves and X-rays.

Rutherford’s atoms should spray X-rays
in all directions for a brief instant

before the electron spirals in
to crash into the nucleus.

But Niels Bohr, a Danish theoretical
physicist working with Rutherford,

pointed out that atoms obviously exist,

so maybe the rules of physics
needed to change.

Bohr proposed that an electron
in certain special orbits

doesn’t emit any light at all.

Atoms absorb and emit light
only when electrons change orbits,

and the frequency of the light
depends on the energy difference

in just the way Planck
and Einstein introduced.

Bohr’s atom fixes Rutherford’s problem

and explains why atoms emit only
very specific colors of light.

Each element has its own special orbits,

and thus its own unique
set of frequencies.

The Bohr model has one tiny problem:

there’s no reason for
those orbits to be special.

But Louis de Broglie,
a French PhD student,

brought everything full circle.

He pointed out that if light,
which everyone knew is a wave,

behaves like a particle,

maybe the electron,
which everyone knew is a particle,

behaves like a wave.

And if electrons are waves,

it’s easy to explain Bohr’s rule
for picking out the special orbits.

Once you have the idea that
electrons behave like waves,

you can go look for it.

And within a few years,
scientists in the US and UK

had observed wave behavior from electrons.

These days we have a wonderfully clear
demonstration of this:

shooting single electrons at a barrier
with slits cut in it.

Each electron is detected
at a specific place at a specific time,

like a particle.

But when you repeat the experiment
many times,

all the individual electrons trace out
a pattern of stripes,

characteristic of wave behavior.

The idea that particles behave like waves,
and vice versa,

is one of the strangest
and most powerful in physics.

Richard Feynman famously said

that this illustrates the central mystery
of quantum mechanics.

Everything else follows from this,

like pieces of a puzzle
falling into place.

物理学中最令人惊奇的事实
之一是:

宇宙中的一切,从光
到电子再到原子,同时

表现得既像粒子又像波


可能听说过关于量子物理学的所有其他奇怪的东西,

薛定谔的猫,上帝玩骰子,
远处的幽灵行动,

所有

这一切都直接源于万物都有
粒子和波动性质的事实。

这听起来可能很疯狂。

如果你环顾四周,你会看到
水中的波浪和岩石颗粒

,它们完全不同。

那么你为什么要考虑将它们结合起来呢?

物理学家不只是突然决定将
这些东西混合在一起。

相反,他们

通过一个小步骤,

将大量证据拼凑在一起,
就像拼图中的碎片一样,被引导到了宇宙的双重性质。

第一个认真
提出光的双重性质的人

是 1905 年的阿尔伯特·爱因斯坦,

但他从马克斯·普朗克那里得到了一个
更早的想法。

普朗克解释了
热物体发出的光的颜色,

比如灯泡中的灯丝,

但要做到这一点,他需要一个绝招:

他说这个物体是

只能
以离散的块发光的振荡器组成的,

单位为 能量
取决于光的频率。

普朗克对此并不真正满意,
但爱因斯坦捡起它并带着它跑了。

他将普朗克的想法应用于光本身,
说光

,众所周知是波
,实际上是光子流,

每个光子都具有离散量的能量。

爱因斯坦本人称这
是他所做的唯一真正具有革命性的事情,

但它解释了照射
在金属表面上的光撞击松散电子的方式。

即使是讨厌这个想法的人也
不得不同意它非常有效。

下一块拼图来自
英格兰的欧内斯特·卢瑟福。

1909 年,为卢瑟福工作的欧内斯特·马斯登 (Ernest Marsden) 和汉斯·盖格 (Hans Geiger)

向金原子发射了 α 粒子,

并惊讶地发现其中一些
直接向后反弹。

这表明
原子的大部分质量集中在一个微小的原子核中。

你在小学学习的卡通原子

,电子
像微型太阳系一样绕着轨道运行,

这就是卢瑟福的。 卢瑟福的原子

有一个小问题
:它不能工作。

经典物理学告诉我们

绕圈旋转的电子会发光

,我们一直使用它
来产生无线电波和 X 射线。

卢瑟福的原子应该

在电子旋
入撞击原子核之前向各个方向喷射 X 射线片刻。

但与卢瑟福合作的丹麦理论物理学家尼尔斯·玻尔

指出,原子显然存在,

所以也许物理规则
需要改变。

玻尔提出,
在某些特殊轨道

上的电子根本不发光。

只有当电子改变轨道时,原子才会吸收和发射光,

而光的频率取决于

普朗克
和爱因斯坦介绍的能量差。

玻尔的原子解决了卢瑟福的问题

并解释了为什么原子只发出
非常特定颜色的光。

每个元素都有自己的特殊轨道

,因此也有自己独特的一
组频率。

玻尔模型有一个小问题:

这些轨道没有理由是特殊的。

但是法国博士生路易斯·德布罗意(Louis de Broglie)

把一切都绕了个圈。

他指出,如果光
这个大家都知道是波的

行为表现得像粒子,那么

也许
大家都知道是粒子的电子

表现得像波。

如果电子是波,

那么很容易解释玻尔
挑选特殊轨道的规则。

一旦你知道
电子表现得像波,

你就可以去寻找它。

几年之内,
美国和英国的科学家

就观察到了电子的波动行为。

这些天来,我们有一个非常清晰的
演示:

向一个带有狭缝的屏障发射单个电子

每个电子
在特定时间的特定位置被检测到,

就像一个粒子。

但是当你多次重复这个实验时

所有的单个电子都会勾勒出
一种条纹图案,这

是波浪行为的特征。

粒子表现得像波,反之亦然的想法是

物理学中最奇怪和最强大的想法之一。

理查德·费曼(Richard Feynman)有句名言

,这说明了量子力学的核心奥秘

其他一切都由此而来,

就像拼图的碎片
落入到位。