Why neutrinos matter Slvia Bravo Gallart

They’re everywhere,
but you will never see one.

Trillions of them are flying
through you right this second,

but you can’t feel them.

These ghost particles are called neutrinos
and if we can catch them,

they can tell us about
the furthest reaches

and most extreme environments
of the universe.

Neutrinos are elementary particles,

meaning that they can’t be subdivided
into other particles the way atoms can.

Elementary particles are the smallest
known building blocks

of everything in the universe,

and the neutrino is one
of the smallest of the small.

A million times less massive
than an electron,

neutrinos fly easily through matter,
unaffected by magnetic fields.

In fact, they hardly ever
interact with anything.

That means that they can travel
through the universe in a straight line

for millions, or even billions, of years,

safely carrying information
about where they came from.

So where do they come from?

Pretty much everywhere.

They’re produced in your body
from the radioactive decay of potassium.

Cosmic rays hitting atoms
in the Earth’s atmosphere

create showers of them.

They’re produced by nuclear
reactions inside the sun

and by radioactive
decay inside the Earth.

And we can generate them
in nuclear reactors

and particle accelerators.

But the highest energy neutrinos
are born far out in space

in environments that
we know very little about.

Something out there,
maybe supermassive black holes,

or maybe some cosmic dynamo
we’ve yet to discover,

accelerates cosmic rays to energies
over a million times greater

than anything human-built
accelerators have achieved.

These cosmic rays,
most of which are protons,

interact violently with the matter
and radiation around them,

producing high-energy neutrinos,

which propagate out
like cosmic breadcrumbs

that can tell us about the locations

and interiors of the universe’s most
powerful cosmic engines.

That is, if we can catch them.

Neutrinos' limited interactions
with other matter

might make them great messengers,

but it also makes them
extremely hard to detect.

One way to do so is to put a huge volume
of pure transparent material in their path

and wait for a neutrino to reveal itself

by colliding with the nucleus of an atom.

That’s what’s happening
in Antarctica at IceCube,

the world’s largest neutrino telescope.

It’s set up within
a cubic kilometer of ice

that has been purified by the pressure

of thousands of years
of accumulated ice and snow,

to the point where it’s one
of the clearest solids on Earth.

And even though it’s shot through with
boreholes holding over 5,000 detectors,

most of the cosmic neutrinos racing
through IceCube will never leave a trace.

But about ten times a year,

a single high-energy neutrino
collides with a molecule of ice,

shooting off sparks of charged
subatomic particles

that travel faster through the ice
than light does.

In a similar way to how a jet
that exceeds the speed of sound

produces a sonic boom,

these superluminal charged particles
leave behind a cone of blue light,

kind of a photonic boom.

This light spreads through IceCube,

hitting some of its detectors
located over a mile beneath the surface.

Photomultiplier tubes amplify the signal,

which contains information about
the charged particles' paths and energies.

The data are beamed
to astrophysicists around the world

who look at the patterns of light

for clues about the neutrinos
that produced them.

These super energetic collisions
are so rare

that IceCube’s scientists give each
neutrino nicknames,

like Big Bird and Dr. Strangepork.

IceCube has already observed

the highest energy
cosmic neutrinos ever seen.

The neutrinos it detects should finally
tell us where cosmic rays come from

and how they reached
such extreme energies.

Light, from infrared,
to x-rays, to gamma rays,

has given us increasingly energetic

and continuously surprising
views of the universe.

We are now at the dawn
of the age of neutrino astronomy,

and we have no idea
what revelations IceCube

and other neutrino telescopes may bring us

about the universe’s most violent,
most energetic phenomena.

它们无处不在,
但你永远看不到。

数以万亿计的它们就在
这一秒从你身边飞过,

但你感觉不到它们。

这些幽灵粒子被称为中微子
,如果我们能捕捉到它们,

它们就可以告诉我们宇宙
最遥远

和最极端的
环境。

中微子是基本粒子,

这意味着它们不能
像原子那样细分为其他粒子。

基本粒子是宇宙中已知最小的
组成

部分

,中微子是最小的中微子
之一。 中微子

的质量比电子小一百万倍

很容易穿过物质,
不受磁场的影响。

事实上,他们几乎从不
与任何事物互动。

这意味着它们可以
沿直线穿越宇宙

数百万甚至数十亿年,

安全地携带
有关它们来自何处的信息。

那么它们是从哪里来的呢?

几乎无处不在。

它们是由
钾的放射性衰变在您的体内产生的。

宇宙射线撞击
地球大气中的原子,

产生了它们的阵雨。

它们是由
太阳内部的核反应


地球内部的放射性衰变产生的。

我们可以
在核反应堆

和粒子加速器中生成它们。

但是最高能量的中微子
是在我们知之甚少的环境中诞生在遥远的太空

中的

那里的某些东西,
可能是超大质量黑洞,

或者可能是
我们尚未发现的某种宇宙发电机,它们

将宇宙射线加速到

比人造
加速器所能达到的能量高一百万倍的能量。

这些宇宙射线,
其中大部分是质子,

与周围的物质
和辐射发生剧烈相互作用,

产生高能中微子,

它们
像宇宙面包屑一样传播出去

,可以告诉我们

宇宙中最
强大的宇宙引擎的位置和内部。

也就是说,如果我们能抓住它们。

中微子与其他物质的有限相互作用

可能使它们成为伟大的信使,

但这也使它们
极难被发现。

一种方法是
在它们的路径上放置大量纯透明材料,

然后等待中微子

通过与原子核碰撞而显露出来。

就是世界上最大的中微子望远镜冰立方在南极洲正在发生的事情。

它位于
一立方公里的冰层内

,经过


千年累积的冰雪压力净化

,它是
地球上最清澈的固体之一。

即使它被
装有 5,000 多个探测器的钻孔

射穿,大多数
穿过冰立方的宇宙中微子也永远不会留下痕迹。

但每年大约有十次,

一个高能中微子
与冰分子碰撞,

射出带电
亚原子粒子的火花,这些粒子

在冰中的传播速度
比光快。

与超过音速的喷气机如何

产生音爆类似,

这些超光速带电粒子会
留下一个蓝色光锥,

有点像光子爆。

这道光穿过冰立方,

击中
位于地表下方一英里以上的一些探测器。

光电倍增管放大信号,

其中包含
有关带电粒子路径和能量的信息。

这些数据被传
送给世界各地的天体物理学家,

他们观察光的模式以

寻找关于产生它们的中微子的线索

这些超高能碰撞
是如此罕见

,以至于冰立方的科学家们给每个
中微子起了绰号,

比如大鸟和奇异猪博士。

IceCube 已经观测到

了有史以来能量最高的
宇宙中微子。

它探测到的中微子最终应该会
告诉我们宇宙射线从何而来

,以及它们是如何达到
如此极端的能量的。

从红外线
到 X 射线,再到伽马射线的光

,给了我们越来越充满活力

和不断令人
惊讶的宇宙观。

我们现在正处于
中微子天文学时代的黎明

,我们不知道
冰立方

和其他中微子望远镜可能会给我们带来

关于宇宙中最剧烈、
最有活力的现象的什么启示。