Inteligencia artificial y la materia oscura del universo

Translator: Gisela Giardino
Reviewer: Sebastian Betti

When I was a girl and for several years

my dad used to take me to visit
his friend Manuel on Saturdays.

Manuel Sadosky was a wise person
we both greatly admired.

I still remember the passion in his eyes
when he talked about anything.

From scientific policy
to his Clementine stories.

Clementine was the first computer
Argentina had

that was used for scientific purposes.

It occupied a whole room and he himself
had brought it to the country in 1960.

In the living room of his tiny flat
filled with books

I listened to the questions he asked me.

If I knew the origin of zero, of infinity,

and many other questions

I had never imagined
they were even thinkable.

When Manuel talked about history

I would leave wanting to be a historian.

Other times, when he talked
about mathematics or philosophy

I’d leave wanting to be
a mathematician or a philosopher.

Those afternoons at Manuel’s
made me feel elated.

I remember I would leave
feeling more curious,

with the impatience
of those who don’t know

and still have a whole world to know.

Like a girl before a new jigsaw puzzle,

who can’t wait
to start putting it together.

Manuel opened the doors
of curiosity for me

and taught me the value of questions.

Over the years I realized
that this is the feeling

you have when you do science.

The more you know, the more doubts you
have and the more you want to know.

After graduating from physics
at the University of Buenos Aires,

I finally found in Cosmology

the space to put together
my passion for mathematics,

physics and philosophy.

And that’s what I do now.

Cosmologists are like archaeologists,

we study the past
to be able to better understand

our present and our future.

Just like archaeologists use ruins

we cosmologists use
the light that reaches us

from somewhere in space.

The light that comes to us,
for example, from a star.

It can take a long time,
millions of years, to reach us.

And when it does, it lets us see
what the star was like in the past.

The farther away the star is

it takes longer to reach us

and farther back in time we can see.

In other words, studying
the distant universe is like time travel.

Back in 1965,
two Bell Labs astronomers,

Arno Penzias and Bob Wilson,
were working with an antenna

they had built to detect
radio waves that came from space.

To be able to measure those dim waves

they had to get rid of every possible
interference in their detectors.

And they did it by cooling them down
at very low temperatures, -269 °C.

But in doing so, they found
a signal they could not explain.

They tried to get rid of this signal
in every way possible.

But they couldn’t.

They even climbed the antenna

thinking that the problem
could be pigeon poo to no avail.

The signal was still present.

The oldest light we can observe

travels towards us from the Big Bang

14 billion years ago.

At first, protons, electrons and photons

formed a dense soup of particles
to very high energies.

This soup oscillated, gravity
made the particles come together,

and photons put pressure outwards.

I like to think of these fluctuations
like a cosmic symphony

where oscillations
are like the notes of an instrument.

Meanwhile, the universe
was expanding and cooling down.

400,000 years after the Big Bang
the first stable atoms formed.

And since then, light travels towards us

on a lonely journey
bringing information

of what was happening at the time.

This light is known as
“cosmic background radiation”.

And the temperature of this light
comes to us with small fluctuations

in different parts of the universe.

The regions with higher temperatures
had more matter.

And regions with a little more matter
grew, because of gravity,

and ended up forming the stars
and the galaxies we observe today.

While Penzias and Wilson
were still trying to fix the antenna

they found out that a group
at Princeton University,

not far from where they were

was writing an article

in which they proposed existence
of this cosmic background radiation.

They immediately realized
the importance of what they had detected.

What they thought was
pigeon poo, was no less

than cosmic background radiation.

The glimpse that reaches us
from the Big Bang.

A few years later, back in the 70s
an astronomer, Vera Rubin,

was studying the rotation speed
of stars in different galaxies.

Her measurements gave results
quite different than expected.

It was expected to see
that the stars were slower

the further away they would be
from the center of the galaxy,

just like with the planets
spinning around the sun.

But she saw that speed
remained constant

even for distances
far from the center.

And for this to be possible
there should be in space

more matter than we can observe.

This was the first sound evidence

of what is known as “dark matter”.

And this pioneering work by Vera Rubin

served to explain lots of observations,

including the cosmic symphony
of the Big Bang I told you about before.

Believe it or not, 85 percent
of the matter all over the universe

is dark matter.

85 percent and still today
we don’t understand what it is.

Unfortunately, Vera Rubin
died a few years ago,

without receiving, in my opinion,
well-deserved recognition.

When I met her at an event
for women scientists 11 years ago,

at the University of Chicago,

there was already
a timid talk around the issue

of gender disparity in sciences.

This was a problem Vera knew too well.

With my research group at Harvard

we try to understand what dark matter is

through its effects
in our observations of the cosmos.

And because we can’t see it directly,

we’re trying to find
other ways to detect it.

For example, we make use of the fact

that its mass deforms space-time.

And that’s why the light
coming to us from any galaxy,

instead of traveling
in a straight line,

deviates creating curves in the sky.

This phenomenon predicted by Einstein
in his theory of general relativity

is known as “gravitational lens effect”.

We look for small clumps of dark matter

because we believe that
we can find clues in them

about the nature of dark matter.

These light clumps
create small fluctuations

in the arches we observe in the sky.

The traditional method of detecting
these little disturbances

is to analyze image by image,
which is a really time-consuming job.

Researchers spend months
analyzing these images

and in general, they don’t find anything.

Until now only two detections
had been made with this method.

Now we have dozens of images
of arches to analyze.

But soon with data
from new telescopes

we’ll have tens of thousands
of these images.

And this kind of analysis
will become impossible at this pace.

We were thinking about this problem
with my group

when we thought of using a new branch
of artificial intelligence:

machine learning.

It aims to develop algorithms

that make computers be able to learn
by pattern recognition.

These algorithms are the ones
that Google translator use

or YouTube when
they recommend you a video

based on your personal taste.

We use it to research
on dark matter.

We train these programs

using hundreds of thousand simulations
of galaxy images.

And we saw that
with these kinds of methods

we can find clumps of matter,
even very small clumps.

I still remember my surprise
this February

when two members of my group,
Ana Díaz Rivero and Bryan Ostdiek,

came to my office
with their first results

and I told them to check them again

because they were
too good to be real.

After many comings and goings
we observed that, actually,

our method works much better
than traditional analyses.

We can detect
clumps of dark matter,

even clumps we once thought
impossible to detect,

and we can do it
in less than a second,

instead of months of researchers
analyzing image after image.

A few months ago, with colleagues
from Harvard University, MIT,

and other universities in the region

we opened an institute
of artificial intelligence

where physicists from different
disciplines can use these methods.

I sometimes wonder what Manuel would say
if he could see what we’re achieving

with these intelligent machines.

And I also think about how our knowledge
about the universe changed,

from Clementine’s time until now.

The large amount of data
we managed to collect

and the more to come
will help us fit in better

our puzzle pieces.

And as the pieces come closer
new questions arise.

And this for me is to do science:
the constant quest

not only for answers,
but also as importantly,

of the right question.

And it doesn’t matter that the pieces
of the puzzle don’t fit perfectly.

They probably never will.

After all, this is part
of the beauty of doing science.

译者:Gisela Giardino
审稿人:Sebastian Betti

当我还是个女孩的时候,几年来

我父亲常常在星期六带我去拜访
他的朋友 Manuel。

Manuel Sadosky 是一个
我们都非常钦佩的聪明人。

我还记得
他谈任何事情时眼中的热情。

从科学政策
到他的克莱门汀故事。

Clementine 是
阿根廷拥有

的第一台用于科学目的的计算机。

它占据了整个房间,他本人
在 1960 年把它带到了这个国家。

在他那堆满书的小公寓的客厅里,

我听着他问我的问题。

如果我知道零、无穷大

和许多其他

我从未想象过的问题的起源,
它们甚至是可以想象的。

当曼努埃尔谈到历史时,

我想成为一名历史学家。

其他时候,当他
谈到数学或哲学时,

我会想成为
一名数学家或哲学家。

在曼努埃尔家的那些下午
让我感到兴高采烈。

我记得我离开时会
感到更加好奇,

因为
那些不

知道但仍然有整个世界要知道的人的不耐烦。

就像一个女孩面对一个新的拼图游戏

,迫不及待
地开始拼凑它。

曼努埃尔为我打开了好奇心之门

,教会了我提问的价值。

多年来,我
意识到这就是

你做科学时的感觉。

你知道的越多,你的疑惑
就越多,你想知道的就越多。

从布宜诺斯艾利斯大学的物理学专业毕业后

我终于在宇宙学中找到

了将
我对数学、

物理学和哲学的热情融为一体的空间。

这就是我现在所做的。

宇宙学家就像考古学家,

我们研究
过去是为了更好地了解

我们的现在和未来。

就像考古学家使用废墟一样,

我们宇宙学家使用

从太空某处到达我们的光。

例如,来自星星的光。

它可能需要很长时间,
数百万年才能到达我们身边。

当它发生时,它让我们
看到了这颗恒星过去的样子。

恒星越远

,到达我们

的时间就越长,我们能看到的时间就越早。

换句话说,
研究遥远的宇宙就像时间旅行。

早在 1965 年,
贝尔实验室的两位天文学家

阿诺·彭齐亚斯和鲍勃·威尔逊
正在使用

他们建造的天线来探测
来自太空的无线电波。

为了能够测量那些微弱的波,

他们必须摆脱探测器中所有可能的
干扰。

他们通过
在非常低的温度(-269°C)下冷却它们来做到这一点。

但在这样做的过程中,他们发现
了一个他们无法解释的信号。

他们试图
以各种可能的方式摆脱这个信号。

但他们做不到。

他们甚至爬上了天线

,认为问题
可能是鸽子便便,但无济于事。

信号仍然存在。

我们可以观察到的最古老的光是

从 140 亿年前的大爆炸向我们传播的

起初,质子、电子和光子

形成了密集的粒子汤,
能量非常高。

这汤振荡,重力
使粒子聚集在一起

,光子向外施加压力。

我喜欢把这些波动想象成
一首宇宙交响乐

,其中的
振荡就像乐器的音符。

与此同时,宇宙
正在膨胀和冷却。

大爆炸后 40 万年
,第一个稳定的原子形成。

从那时起,光

在一段孤独的旅程中向我们走来,
带来

了当时正在发生的事情的信息。

这种光被称为
“宇宙背景辐射”。

这种光的温度
随着宇宙不同部分的微小波动而来到我们身边

温度较高的区域
有更多的物质。

由于重力的原因,物质更多的区域不断增长

,最终形成了
我们今天观察到的恒星和星系。

当彭齐亚斯和
威尔逊还在尝试修理天线时,

他们发现

距离他们所在的地方不远的普林斯顿大学的一个小组

正在撰写一篇文章

,其中他们提出
了这种宇宙背景辐射的存在。

他们立即
意识到他们发现的东西的重要性。

他们认为是
鸽粪,

不亚于宇宙背景辐射。

从大爆炸中我们看到的一瞥。

几年后,早在 70 年代
,天文学家维拉·鲁宾 (Vera Rubin)

正在研究
不同星系中恒星的旋转速度。

她的测量结果
与预期完全不同。

预计会
看到恒星

离银河系中心越远越慢,

就像行星
围绕太阳旋转一样。

但她发现,

即使
距离中心很远,速度也保持不变。

为了使这成为
可能,太空中

的物质应该比我们观察到的要多。

这是所谓的“暗物质”的第一个可靠证据。

维拉鲁宾的这项开创性工作

解释了许多观察结果,

包括
我之前告诉过你的宇宙大爆炸的交响曲。

信不信由你,
整个宇宙中 85% 的物质

都是暗物质。

85%,直到今天
我们仍然不明白它是什么。

不幸的是,维拉鲁宾
几年前去世了

,在我看来,没有得到
当之无愧的认可。 11 年前,

当我在芝加哥大学的一次女科学家活动中遇到她时

,关于科学中的性别差异

问题已经有了
一个胆怯的话题

这是维拉非常清楚的一个问题。

通过我在哈佛的研究小组,

我们试图通过暗物质

在我们对宇宙的观察中的影响来理解什么是暗物质。

而且因为我们不能直接看到它,所以

我们正在尝试寻找
其他方法来检测它。

例如,我们利用了

它的质量使时空变形的事实。

这就是为什么
从任何星系射向我们的光,

不是直线传播,而是

在天空中形成曲线。

爱因斯坦在广义相对论中预言的这种现象

被称为“引力透镜效应”。

我们寻找小块暗物质,

因为我们相信
我们可以在其中找到

关于暗物质性质的线索。

这些光团

在我们在天空中观察到的拱门中产生了微小的波动。

检测这些小干扰的传统方法

是逐个图像分析,
这是一项非常耗时的工作。

研究人员花了几个月的时间
分析这些图像

,但总的来说,他们什么也没找到。

到目前为止
,这种方法只进行了两次检测。

现在我们有几十张拱门的图像
要分析。

但很快有了
来自新望远镜的数据,

我们将拥有数万张
这样的图像。

以这种速度,这种分析将变得不可能。

当我们考虑使用人工智能的一个新分支:机器学习时,我们正在和我的团队一起考虑这个问题

它旨在开发

使计算机能够
通过模式识别进行学习的算法。

这些算法
是 Google 翻译器

或 YouTube 在

根据您的个人品味向您推荐视频时使用的算法。

我们用它来
研究暗物质。

我们

使用数十万
个星系图像模拟来训练这些程序。

我们看到,
通过这些方法,

我们可以找到物质团块,
甚至是非常小的团块。

我仍然记得今年 2 月我的惊喜,

当时我小组的两名成员
Ana Díaz Rivero 和 Bryan Ostdiek

带着他们的第一个结果来到我的办公室

,我告诉他们再次检查它们,

因为它们
好得令人难以置信。

经过多次来来去去,
我们观察到,实际上,

我们的方法
比传统分析效果好得多。

我们可以探测到
暗物质团块,

甚至是我们曾经认为
不可能探测到的团块,

而且我们可以
在不到一秒钟的时间内完成,

而不是研究人员需要几个月的时间来
分析图像。

几个月前,我们与
来自哈佛大学、麻省理工学院

和该地区其他大学的同事一起

开设了一个
人工智能研究所,

来自不同
学科的物理学家可以使用这些方法。

我有时想知道如果曼努埃尔
能看到我们

用这些智能机器取得的成就,他会说什么。

我还思考了

从克莱门汀时代到现在,我们对宇宙的认识是如何变化的。 我们设法收集

的大量数据

以及更多数据
将帮助我们更好地适应

我们的拼图。

随着碎片越来越近,
新的问题出现了。

对我来说,这就是做科学
:不断

寻求答案,
而且同样重要的

是,正确的问题。

拼图的各个部分
不完全吻合也没关系。

他们可能永远不会。

毕竟,这是
做科学之美的一部分。