How a blind astronomer found a way to hear the stars Wanda Diaz Merced

Once there was a star.

Like everything else, she was born;

grew to be around 30 times
the mass of our sun

and lived for a very long time.

Exactly how long,

people cannot really tell.

Just like everything in life,

she reached the end
of her regular star days

when her heart, the core of her life,

exhausted its fuel.

But that was no end.

She transformed into a supernova,
and in the process

releasing a tremendous amount of energy,

outshining the rest of the galaxy

and emitting, in one second,

the same amount of energy
our sun will release in 10 days.

And she evolved
into another role in our galaxy.

Supernova explosions are very extreme.

But the ones that emit gamma rays
are even more extreme.

In the process of becoming a supernova,

the interior of the star collapses
under its own weight

and it starts rotating ever faster,

like an ice skater when pulling
their arms in close to their body.

In that way, it starts rotating very fast
and it increases, powerfully,

its magnetic field.

The matter around the star
is dragged around,

and some energy from that rotation
is transferred to that matter

and the magnetic field
is increased even further.

In that way, our star had extra energy
to outshine the rest of the galaxy

in brightness and gamma ray emission.

My star, the one in my story,

became what is known as a magnetar.

And just for your information,

the magnetic field of a magnetar
is 1,000 trillion times

the magnetic field of Earth.

The most energetic events
ever measured by astronomers

carry the name gamma-ray bursts

because we observe them
as bursts most or explosions,

most strongly measured as gamma-ray light.

Our star, like the one in our story
that became a magnetar,

is detected as a gamma-ray burst

during the most energetic
portion of the explosion.

Yet, even though gamma-ray bursts
are the strongest events

ever measured by astronomers,

we cannot see them with our naked eye.

We depend, we rely on other methods

in order to study this gamma-ray light.

We cannot see them with our naked eye.

We can only see
an itty bitty, tiny portion

of the electromagnetic spectrum
that we call visible light.

And beyond that, we rely on other methods.

Yet as astronomers,
we study a wider range of light

and we depend on other methods to do that.

On the screen, it may look like this.

You’re seeing a plot.

That is a light curve.

It’s a plot of intensity
of light over time.

It is a gamma-ray light curve.

Sighted astronomers
depend on this kind of plot

in order to interpret how
this light intensity changes over time.

On the left, you will be seeing
the light intensity without a burst,

and on the right, you will be seeing
the light intensity with the burst.

Early during my career,
I could also see this kind of plot.

But then, I lost my sight.

I completely lost my sight
because of extended illness,

and with it, I lost
the opportunity to see this plot

and the opportunity to do my physics.

It was a very strong transition
for me in many ways.

And professionally, it left me
without a way to do my science.

I longed to access and scrutinize
this energetic light

and figure out the astrophysical cause.

I wanted to experience
the spacious wonder, the excitement,

the joy produced by the detection
of such a titanic celestial event.

I thought long and hard about it,

when I suddenly realized
that all a light curve is,

is a table of numbers
converted into a visual plot.

So along with my collaborators,

we worked really hard and we translated
the numbers into sound.

I achieved access to the data,

and today I’m able to do physics
at the level of the best astronomer,

using sound.

And what people have been able to do,

mainly visually,

for hundreds of years,

now I do it using sound.

(Applause)

Listening to this gamma-ray burst

that you’re seeing on the –
(Applause continues)

Thank you.

Listening to this burst
that you’re seeing on the screen

brought something to the ear
beyond the obvious burst.

Now I’m going to play the burst for you.

It’s not music, it’s sound.

(Digital beeping sounds)

This is scientific data
converted into sound,

and it’s mapped in pitch.

The process is called sonification.

So listening to this
brought something to the ear

besides the obvious burst.

When I examine the very strong
low-frequency regions,

or bass line – I’m zooming
into the bass line now.

We noted resonances characteristic
of electrically charged gasses

like the solar wind.

And I want you to hear what I heard.

You will hear it as a very fast
decrease in volume.

And because you’re sighted,
I’m giving you a red line

indicating what intensity of light
is being converted into sound.

(Digital hum and whistling sound)

The (Whistles) is frogs at home,
don’t pay attention to that.

(Laughter)

(Digital hum and whistling sound)

I think you heard it, right?

So what we found

is that the bursts last long enough
in order to support wave resonances,

which are things caused by exchanges
of energy between particles

that may have been excited,

that depend on the volume.

You may remember that I said
that the matter around the star

is dragged around?

It transmits power with frequency
and field distribution

determined by the dimensions.

You may remember that we were talking
about a super-massive star

that became a very strong
magnetic field magnetar.

If this is the case, then outflows
from the exploding star

may be associated
with this gamma-ray burst.

What does that mean?

That star formation
may be a very important part

of these supernova explosions.

Listening to this very gamma-ray burst
brought us to the notion

that the use of sound
as an adjunctive visual display

may also support sighted astronomers

in the search for more
information in the data.

Simultaneously, I worked on analyzing
measurements from other telescopes,

and my experiments demonstrated

that when you use sound
as an adjunctive visual display,

astronomers can find more information

in this now more accessible data set.

This ability to transform data into sound

gives astronomy a tremendous
power of transformation.

And the fact that a field
that is so visual may be improved

in order to include anyone with interest
in understanding what lies in the heavens

is a spirit-lifter.

When I lost my sight,

I noticed that I didn’t have access

to the same amount
and quality of information

a sighted astronomer had.

It was not until we innovated
with the sonification process

that I regained the hope
to be a productive member of the field

that I had worked so hard to be part of.

Yet, information access
is not the only area in astronomy

where this is important.

The situation is systemic

and scientific fields are not keeping up.

The body is something changeable –

anyone may develop
a disability at any point.

Let’s think about, for example,

scientists that are already
at the top of their careers.

What happens to them
if they develop a disability?

Will they feel excommunicated as I did?

Information access
empowers us to flourish.

It gives us equal opportunities
to display our talents

and choose what we want
to do with our lives,

based on interest and not based
on potential barriers.

When we give people the opportunity
to succeed without limits,

that will lead to personal fulfillment
and prospering life.

And I think that the use
of sound in astronomy

is helping us to achieve that
and to contribute to science.

While other countries told me
that the study of perception techniques

in order to study astronomy data
is not relevant to astronomy

because there are no blind
astronomers in the field,

South Africa said, “We want
people with disabilities

to contribute to the field.”

Right now, I’m working

at the South African
Astronomical Observatory,

at the Office of Astronomy
for Development.

There, we are working on sonification
techniques and analysis methods

to impact the students
of the Athlone School for the Blind.

These students will be learning
radio astronomy,

and they will be learning
the sonification methods

in order to study astronomical events
like huge ejections of energy

from the sun, known as
coronal mass ejections.

What we learn with these students –

these students have multiple disabilities
and coping strategies

that will be accommodated –

what we learn with these students
will directly impact

the way things are being done
at the professional level.

I humbly call this development.

And this is happening right now.

I think that science is for everyone.

It belongs to the people,

and it has to be available to everyone,

because we are all natural explorers.

I think that if we limit people
with disabilities

from participating in science,

we’ll sever our links with history
and with society.

I dream of a level
scientific playing field,

where people encourage respect
and respect each other,

where people exchange strategies
and discover together.

If people with disabilities
are allowed into the scientific field,

an explosion, a huge titanic burst
of knowledge will take place,

I am sure.

(Digital beeping sounds)

That is the titanic burst.

Thank you.

Thank you.

(Applause)

曾经有一颗星星。

像其他一切一样,她出生了;

长到大约
是我们太阳质量的 30 倍,

并且活了很长时间。

究竟有多长,

人们无法真正分辨。

就像生活中的一切一样,

当她的心脏,她生命的核心,

耗尽它的燃料时,她到达了她正常的明星日子的尽头。

但这还没有结束。

她变成了一颗超新星
,在这个过程中

释放出巨大的能量,

超过了银河系的其他部分

,在一秒钟内释放

出的能量与
我们的太阳在 10 天内释放的能量相同。

她演变
成了我们银河系中的另一个角色。

超新星爆炸是非常极端的。

但发射伽马射线的
则更为极端。

在成为超新星的过程中

,恒星内部
在自身重量的作用下坍塌,

并开始以越来越快的速度旋转,

就像溜冰者将
手臂拉近身体时一样。

通过这种方式,它开始非常快速地旋转
,并有力地增加了

它的磁场。

恒星周围的物质
被拖着走

,旋转产生的一些能量
被转移到那个物质上


磁场进一步增加。

这样一来,我们的恒星就有了额外的能量

在亮度和伽马射线发射方面超过了银河系的其他部分。

我的星星,我故事中的那颗,

变成了所谓的磁星。

仅供参考

,磁星的磁场
是地球磁场的 1,000 万亿倍

。 天文学家测量过

的最有能量的事件

称为伽马射线爆发,

因为我们将它们观察
为大多数爆发或爆炸,

最强烈地测量为伽马射线光。

我们的恒星,就像我们故事中成为磁星的那颗一样,

在爆炸的最活跃
部分被检测为伽马射线爆发。

然而,即使伽马射线暴

天文学家测量到的最强事件,

我们也无法用肉眼看到它们。

我们依靠,我们依靠其他

方法来研究这种伽马射线光。

我们无法用肉眼看到它们。

我们只能看到我们称之为可见光
的电磁光谱的一小部分

除此之外,我们还依赖其他方法。

然而,作为天文学家,
我们研究的光范围更广

,我们依靠其他方法来做到这一点。

在屏幕上,它可能看起来像这样。

你看到的是一个阴谋。

那是一个光曲线。


是光强度随时间变化的图。

它是伽马射线光变曲线。

有视力的天文学家
依靠这种

图来解释
这种光强度如何随时间变化。

在左侧,您将看到
没有爆发的光强度

,在右侧,您将看到
有爆发的光强度。

在我职业生涯的早期,
我也能看到这样的情节。

但后来,我失去了视线。

由于长期生病

,我完全失去了视力,也因此失去
了看到这个

情节的机会和做物理的机会。


很多方面来说,这对我来说都是一个非常强大的转变。

在专业上,它让我
没有办法去做我的科学。

我渴望接近并仔细检查
这道充满活力的光,

并找出天体物理学的原因。

我想体验

探测
到如此巨大的天体事件所产生的广阔奇迹、兴奋和喜悦。

我想了很久,突然意识到

,光曲线

就是一张
转换成视觉图的数字表。

因此,与我的合作者一起

,我们非常努力地工作,
并将数字转化为声音。

我实现了对数据的访问

,今天我能够使用声音
在最好的天文学家的水平上做物理学

几百年来人们

主要是在视觉

上能够做的事情,

现在我用声音来做。

(掌声)

聆听

你在电视上看到的伽马射线爆发——
(掌声继续)

谢谢。

聆听
您在屏幕上看到的这种爆发,

除了明显的爆发之外,还给耳朵带来了一些东西。

现在我要为你演奏爆发。

不是音乐,是声音。

(数字哔声)

这是
转换为声音的科学数据,

并以音高映射。

该过程称为声化。

因此,

除了明显的爆裂声之外,听到这句话还让人耳目一新。

当我检查非常强
的低频区域

或低音线时——我现在正在
放大低音线。

我们注意到太阳风等
带电气体的共振特性

我想让你听到我听到的。

您会听到
音量快速下降的声音。

因为你有视力,
所以我给你一条红线,

表示
正在转换成声音的光强度。

(数字嗡嗡声和口哨声

) (口哨)是家里的青蛙,
不要理会。

(笑声)

(数字嗡嗡声和口哨声)

我想你听到了,对吧?

所以我们

发现,爆发持续的时间足够长
,以支持波共振,波共振

是由

可能被激发的粒子之间的能量交换引起的,

这取决于体积。

你可能还记得我
说过围绕星星的事情

是被拖来拖去的吧?

它以由尺寸确定的频率
和场分布

来传输功率。

你可能还记得我们谈论的
是一颗超大质量的

恒星变成了一个非常强的
磁场磁星。

如果是这种情况,那么
来自爆炸恒星的流出物

可能
与这次伽马射线爆发有关。

这意味着什么?

这种恒星形成
可能

是这些超新星爆炸中非常重要的一部分。

聆听这种伽马射线爆发
让我们

想到,使用声音
作为辅助视觉显示

也可以支持有视力的天文学家

在数据中搜索更多
信息。

同时,我致力于分析
其他望远镜的测量结果

,我的实验表明

,当您使用声音
作为辅助视觉显示时,

天文学家可以

在这个现在更易于访问的数据集中找到更多信息。

这种将数据转化为声音的能力

赋予了天文学
巨大的转化能力。

事实上,一个
如此直观的领域可能会得到改进

,以便让任何有
兴趣了解天空中的事物的人都参与进来,这一事实令人

振奋。

当我失明时,

我注意到我无法获得

与有视力的天文学家相同数量
和质量的信息

直到我们
对声化过程进行

了创新,我才重拾希望

成为我努力工作的领域中的一名富有成效的成员。

然而,信息
访问并不是天文学

中唯一重要的领域。

这种情况是系统性的

,科学领域没有跟上。

身体是多变的——

任何人都可能
在任何时候出现残疾。

例如,让我们考虑

一下已经
处于职业生涯顶峰的科学家。

如果他们出现残疾,他们会怎样?

他们会像我一样感到被逐出教会吗?

信息访问
使我们能够蓬勃发展。

它为我们提供了平等的机会
来展示我们的才能,

根据兴趣而不是
潜在的障碍来选择我们想要做的生活。

当我们给人们
无限的成功机会时,

这将带来个人成就感
和繁荣的生活。

我认为
在天文学中使用声音

正在帮助我们实现这一目标
并为科学做出贡献。

虽然其他国家告诉我

为了研究天文学数据
而研究感知技术与天文学无关,

因为
该领域没有盲人天文学家,但

南非表示,“我们希望
残疾人

为该领域做出贡献。”

现在,我

在天文学
促进发展办公室的南非天文台工作。

在那里,我们正在研究声化
技术和分析方法,

以影响
阿斯隆盲人学校的学生。

这些学生将学习
射电天文学

,他们将
学习声化方法

,以研究天文事件,
例如

太阳的巨大能量抛射,即
日冕物质抛射。

我们从这些学生那里学到的东西——

这些学生有多种残疾

可以适应的应对策略——

我们从这些学生那里学到的东西
将直接影响

在专业层面上做事的方式。

我谦虚地称之为发展。

而这正在发生。

我认为科学适合所有人。

它属于人民

,必须为每个人所用,

因为我们都是天生的探索者。

我认为,如果我们限制

残疾人参与科学,

我们将切断我们与历史
和社会的联系。

我梦想一个公平的
科学竞争环境,

人们鼓励相互尊重
和尊重,

人们交流策略
和共同发现。

如果允许残疾人进入科学领域,我相信会

发生爆炸,知识的巨大爆炸

(数字哔哔声)

那是泰坦尼克号爆炸。

谢谢你。

谢谢你。

(掌声)