Axolotls The salamanders that snack on each other but dont die Luis Zambrano

In 1864, French zoologist August Duméril

was baffled while investigating
the axolotl.

Unlike many other amphibians,
which transform into terrestrial adults,

axolotls retain their juvenile
characteristics and never leave the water.

In an attempt to induce metamorphosis,

Duméril spent months removing their gills.

But in most instances, the axolotls
simply… grew them back.

Indeed, axolotls are masters
of regeneration:

they can flawlessly regenerate body parts

ranging from amputated limbs and crushed
spines to parts of their eyes and brains.

So how do they do it?
And what other secrets are they keeping?

This extraordinary salamander is native
to the wetlands in Mexico City.

Ancient Aztec people considered it
the incarnation of a God named Xolotl—

hence the axolotl’s name,
roughly meaning “water monster.”

Axolotls reach sexual maturity with gills
and a tadpole-like dorsal fin.

Scientists think their forever-young
condition, called “neoteny,”

evolved because of their stable habitat.

For salamanders that develop in waters
that dry up,

efficiently transitioning to land
is essential.

But the lakes axolotls evolved
in were unchanging year-round

and didn’t host many aquatic predators.

So, scientists think it was advantageous
for axolotls

to forgo the demands of metamorphosis.

However,
they haven’t completely lost this ability.

If exposed to certain substances,
axolotls will turn into adults.

But they’ll often experience
shorter lifespans

and lose some of their self-healing
abilities.

These regenerative talents may seem like
crazy superpowers to begin with,

but axolotls have good use for them.

As babies, they’re in direct competition.

So, they snack on each other.

This is usually not a huge problem
thanks to how quickly

they can regenerate body parts.

When an axolotl loses a limb, tissues
stimulate growth in the area.

Skin cells divide and cover the wound.

Then, progenitor cells, which can develop
into various bodily tissues,

form a mass at the site of injury

and nearby nerves secrete
growth-promoting proteins.

Over the next few weeks,
a new limb emerges

as cells proliferate and differentiate
in coordination.

This process could potentially lead to
uncontrolled growth and tumor formation.

But axolotls are remarkably
resistant to cancer.

They have a system in place that tightly
controls cellular proliferation.

To better understand the axolotl’s
baffling biology,

scientists sequenced its genome.

They found it to be more than ten times
longer than a human’s.

Mutations can change the length
of any animal’s genome.

For whatever reason, salamanders have
much more DNA than other vertebrates

because they lose parts
of it less frequently.

Investigating the axolotl’s genome,
scientists saw many repeated sequences,

most of which don’t code for proteins
and have no known function.

They also found genes
that are key in regeneration.

However, the biggest factor that sets
axolotl regeneration apart

may not be a set of unique genes,
but how they regulate their genes.

It’s no wonder that axolotls are one
of science’s most studied animals.

But their population in the wild
has plummeted.

Hundreds of years ago, axolotls thrived
under the Aztec capital.

Within the surrounding lakes,

Aztec people built islands called
chinampas for growing crops.

This highly productive form of agriculture
created a vast system of canals,

expanding the lake system’s
shallow, sheltered habitat—

the axolotls’ ideal environment.

But when Spanish invaders arrived,
they began draining the lakes.

And even more water has been
diverted in recent years.

Today, the entire population of wild
axolotls is found in just one place,

Lake Xochimilco, where it’s threatened
by pollution and invasive fishes.

People are working to regenerate
the ecosystem

and strengthen the 2,000 year old
chinampa farming tradition.

If interest grows, farmers could recover
abandoned chinampas

and support the local community—
along with the axolotl.

Eventually, the benefits of saving
this salamander might be even greater.

Scientists hope that one day
we’ll be able to apply

the axolotl’s masterful tumor suppression
and regenerative abilities

to the human body.

Perhaps its secrets are the real reason
for the slimy god monster’s smile.

1864 年,法国动物学家奥古斯特·杜梅里尔

在研究蝾螈时感到困惑

与许多其他两栖动物
会变成陆地成虫不同,

蝾螈保留了它们的幼年
特征,永远不会离开水。

为了诱导变态,

杜梅里尔花了几个月的时间去除了它们的鳃。

但在大多数情况下,蝾螈
只是……让它们长回来了。

事实上,蝾螈
是再生大师:

它们可以完美地再生身体部位

,从截肢和压碎的
脊椎到眼睛和大脑的一部分。

那么他们是怎么做到的呢?
他们还保守着什么秘密?

这种非凡的蝾螈原产
于墨西哥城的湿地。

古代阿兹特克人认为它
是神祇的化身,名叫蝾螈——

因此蝾螈得名,
大致意思是“水怪”。

蝾螈通过鳃
和蝌蚪状背鳍达到性成熟。

科学家们认为,它们永远年轻的
状态,被称为“neoteny”,

是因为它们稳定的栖息地而进化的。

对于在干涸水域中发育的蝾螈来说

有效地过渡到陆地
是必不可少的。

但是蝾螈进化
的湖泊全年都没有变化

,也没有很多水生捕食者。

因此,科学家认为

螈放弃变态的需求是有利的。

但是,
他们并没有完全失去这种能力。

如果接触某些物质,
蝾螈会变成成虫。

但他们通常会经历
更短的寿命

并失去一些自愈
能力。

这些再生能力一开始可能看起来像是
疯狂的超级大国,

但蝾螈对它们有很好的用途。

作为婴儿,他们处于直接竞争中。

所以,他们互相吃零食。

由于它们可以多快地

再生身体部位,这通常不是一个大问题。

当蝾螈失去肢体时,组织会
刺激该区域的生长。

皮肤细胞分裂并覆盖伤口。

然后,可以发育
成各种身体组织的祖细胞

在损伤部位形成团块

,附近的神经分泌
促进生长的蛋白质。

在接下来的几周内,随着细胞的协同增殖和分化,
一个新的肢体出现了

这个过程可能会导致
不受控制的生长和肿瘤形成。

但蝾螈对癌症有显着的
抵抗力。

他们有一个严格
控制细胞增殖的系统。

为了更好地了解蝾螈
令人费解的生物学,

科学家们对其基因组进行了测序。

他们发现它的
长度是人类的十倍以上。

突变可以改变
任何动物基因组的长度。

无论出于何种原因,蝾螈的
DNA 比其他脊椎动物多得多,

因为它们丢失部分 DNA
的频率较低。

在研究蝾螈的基因组时,
科学家们看到了许多重复的序列,

其中大部分不编码蛋白质
,也没有已知的功能。

他们还
发现了再生的关键基因。

然而,使
蝾螈再生与众不同的最大因素

可能不是一组独特的基因,
而是它们如何调节基因。

难怪蝾螈
是科学界研究最多的动物之一。

但它们在野外的
数量急剧下降。

数百年前,蝾螈
在阿兹特克首都繁衍生息。

在周围的湖泊中,

阿兹特克人建造了称为
chinampas 的岛屿来种植农作物。

这种高产的农业形式
创造了一个庞大的运河系统,

扩大了湖泊系统的
浅水、庇护栖息

地——蝾螈的理想环境。

但是当西班牙入侵者到达时,
他们开始排干湖泊。

近年来,甚至更多的水被
改道。

今天,整个野生
蝾螈种群只在一个地方发现,

霍奇米尔科湖,那里
受到污染和入侵鱼类的威胁。

人们正在努力
重建生态系统

并加强具有 2000 年历史的
chinampa 农业传统。

如果兴趣增加,农民可以恢复
废弃的 chinampas

并支持当地社区——
连同蝾螈。

最终,拯救
这条蝾螈的好处可能会更大。

科学家们希望有一天
我们能够

将蝾螈精湛的肿瘤抑制
和再生能力

应用于人体。

或许它的秘密才是
黏糊糊的神怪露出笑容的真正原因。