How were growing baby corals to rebuild reefs Kristen Marhaver

What was the most
difficult job you ever did?

Was it working in the sun?

Was it working to provide food
for a family or a community?

Was it working days and nights
trying to protect lives and property?

Was it working alone

or working on a project
that wasn’t guaranteed to succeed,

but that might improve
human health or save a life?

Was it working to build something,
create something, make a work of art?

Was it work for which you were never sure

you were fully understood or appreciated?

The people in our communities
who do these jobs

deserve our attention, our love
and our deepest support.

But people aren’t the only ones
in our communities

who do these difficult jobs.

These jobs are also done
by the plants, the animals

and the ecosystems on our planet,

including the ecosystems I study:
the tropical coral reefs.

Coral reefs are farmers.

They provide food, income
and food security

for hundreds of millions
of people around the world.

Coral reefs are security guards.

The structures that they build
protect our shorelines

from storm surge and waves,

and the biological systems
that they house filter the water

and make it safer for us to work and play.

Coral reefs are chemists.

The molecules that we’re discovering
on coral reefs are increasingly important

in the search for new antibiotics
and new cancer drugs.

And coral reefs are artists.

The structures that they build

are some of the most
beautiful things on planet Earth.

And this beauty is the foundation
of the tourism industry

in many countries with few
or little other natural resources.

So for all of these reasons,
all of these ecosystem services,

economists estimate the value
of the world’s coral reefs

in the hundreds of billions
of dollars per year.

And yet despite all that hard work
being done for us

and all that wealth that we gain,

we have done almost everything
we possibly could to destroy that.

We have taken the fish out of the oceans

and we have added in fertilizer, sewage,

diseases, oil, pollution, sediments.

We have trampled the reefs physically
with our boats, our fins, our bulldozers,

and we have changed the chemistry
of the entire sea,

warmed the waters and made storms worse.

And these would all be bad on their own,

but these threats magnify each other

and compound one another
and make each other worse.

I’ll give you an example.

Where I live and work, in Curaçao,
a tropical storm went by a few years ago.

And on the eastern end of the island,

where the reefs are intact and thriving,

you could barely tell
a tropical storm had passed.

But in town, where corals had died
from overfishing, from pollution,

the tropical storm picked up
the dead corals

and used them as bludgeons
to kill the corals that were left.

This is a coral that I studied
during my PhD –

I got to know it quite well.

And after this storm
took off half of its tissue,

it became infested with algae,

the algae overgrew the tissue
and that coral died.

This magnification of threats,
this compounding of factors

is what Jeremy Jackson describes
as the “slippery slope to slime.”

It’s hardly even a metaphor
because many of our reefs now

are literally bacteria
and algae and slime.

Now, this is the part of the talk

where you may expect me
to launch into my plea

for us to all save the coral reefs.

But I have a confession to make:

that phrase drives me nuts.

Whether I see it in a tweet,
in a news headline

or the glossy pages
of a conservation brochure,

that phrase bothers me,

because we as conservationists
have been sounding the alarms

about the death
of coral reefs for decades.

And yet, almost everyone I meet,
no matter how educated,

is not sure what a coral is
or where they come from.

How would we get someone to care
about the world’s coral reefs

when it’s an abstract thing
they can barely understand?

If they don’t understand
what a coral is or where it comes from,

or how funny or interesting
or beautiful it is,

why would we expect them
to care about saving them?

So let’s change that.

What is a coral
and where does it come from?

Corals are born
in a number of different ways,

but most often by mass spawning:
all of the individuals of a single species

on one night a year,

releasing all the eggs
they’ve made that year

into the water column,

packaged into bundles with sperm cells.

And those bundles go to the surface
of the ocean and break apart.

And hopefully – hopefully –
at the surface of the ocean,

they meet the eggs and sperm
from other corals.

And that is why you need
lots of corals on a coral reef –

so that all of their eggs can
meet their match at the surface.

When they’re fertilized, they do
what any other animal egg does:

divides in half again and again and again.

Taking these photos
under the microscope every year

is one of my favorite and most
magical moments of the year.

At the end of all this cell division,
they turn into a swimming larva –

a little tiny blob of fat
the size of a poppy seed,

but with all of the sensory
systems that we have.

They can sense color and light,
textures, chemicals, pH.

They can even feel pressure waves;
they can hear sound.

And they use those talents

to search the bottom of the reef
for a place to attach

and live the rest of their lives.

So imagine finding a place
where you would live the rest of your life

when you were just two days old.

They attach in the place
they find most suitable,

they build a skeleton
underneath themselves,

they build a mouth and tentacles,

and then they begin the difficult work
of building the world’s coral reefs.

One coral polyp will divide itself
again and again and again,

leaving a limestone skeleton
underneath itself

and growing up toward the sun.

Given hundreds of years and many species,

what you get is a massive
limestone structure

that can be seen from space in many cases,

covered by a thin skin
of these hardworking animals.

Now, there are only a few hundred species
of corals on the planet, maybe 1,000.

But these systems house millions
and millions of other species,

and that diversity is what
stabilizes the systems,

and it’s where we’re finding
our new medicines.

It’s how we find new sources of food.

I’m lucky enough to work
on the island of Curaçao,

where we still have reefs
that look like this.

But, indeed, much of the Caribbean
and much of our world

is much more like this.

Scientists have studied
in increasing detail

the loss of the world’s coral reefs,

and they have documented
with increasing certainty the causes.

But in my research, I’m not
interested in looking backward.

My colleagues and I in Curaçao
are interested in looking forward

at what might be.

And we have the tiniest reason
to be optimistic.

Because even in some of these reefs

that we probably could have
written off long ago,

we sometimes see baby corals
arrive and survive anyway.

And we’re starting to think
that baby corals may have the ability

to adjust to some of the conditions
that the adults couldn’t.

They may be able to adjust

ever so slightly more readily
to this human planet.

So in the research I do
with my colleagues in Curaçao,

we try to figure out
what a baby coral needs

in that critical early stage,

what it’s looking for

and how we can try to help it
through that process.

I’m going to show you three examples
of the work we’ve done

to try to answer those questions.

A few years ago we took a 3D printer
and we made coral choice surveys –

different colors and different textures,

and we simply asked the coral
where they preferred to settle.

And we found that corals,
even without the biology involved,

still prefer white and pink,
the colors of a healthy reef.

And they prefer crevices
and grooves and holes,

where they will be safe
from being trampled

or eaten by a predator.

So we can use this knowledge,

we can go back and say
we need to restore those factors –

that pink, that white, those crevices,
those hard surfaces –

in our conservation projects.

We can also use that knowledge

if we’re going to put something
underwater, like a sea wall or a pier.

We can choose to use the materials
and colors and textures

that might bias the system
back toward those corals.

Now in addition to the surfaces,

we also study the chemical
and microbial signals

that attract corals to reefs.

Starting about six years ago,
I began culturing bacteria

from surfaces where corals had settled.

And I tried those one by one by one,

looking for the bacteria that would
convince corals to settle and attach.

And we now have many
bacterial strains in our freezer

that will reliably cause corals

to go through that settlement
and attachment process.

So as we speak,

my colleagues in Curaçao
are testing those bacteria

to see if they’ll help us raise
more coral settlers in the lab,

and to see if those coral settlers
will survive better

when we put them back underwater.

Now in addition to these tools,
we also try to uncover the mysteries

of species that are under-studied.

This is one of my favorite corals,
and always has been:

dendrogyra cylindrus, the pillar coral.

I love it because it makes
this ridiculous shape,

because its tentacles
are fat and look fuzzy

and because it’s rare.

Finding one of these on a reef is a treat.

In fact, it’s so rare,

that last year it was listed
as a threatened species

on the endangered species list.

And this was in part because
in over 30 years of research surveys,

scientists had never found
a baby pillar coral.

We weren’t even sure
if they could still reproduce,

or if they were still reproducing.

So four years ago, we started
following these at night

and watching to see if we could
figure out when they spawn in Curaçao.

We got some good tips
from our colleagues in Florida,

who had seen one in 2007, one in 2008,

and eventually we figured out
when they spawn in Curaçao

and we caught it.

Here’s a female on the left
with some eggs in her tissue,

about to release them into the seawater.

And here’s a male
on the right, releasing sperm.

We collected this, we got it
back to the lab, we got it to fertilize

and we got baby pillar corals
swimming in our lab.

Thanks to the work
of our scientific aunts and uncles,

and thanks to the 10 years of practice
we’ve had in Curaçao

at raising other coral species,

we got some of those larvae
to go through the rest of the process

and settle and attach,

and turn into metamorphosed corals.

So this is the first pillar coral baby
that anyone ever saw.

(Applause)

And I have to say –
if you think baby pandas are cute,

this is cuter.

(Laughter)

So we’re starting to figure out
the secrets to this process,

the secrets of coral reproduction
and how we might help them.

And this is true all around the world;

scientists are figuring out new ways
to handle their embryos,

to get them to settle,

maybe even figuring out the methods
to preserve them at low temperatures,

so that we can preserve
their genetic diversity

and work with them more often.

But this is still so low-tech.

We are limited by the space on our bench,
the number of hands in the lab

and the number of coffees
we can drink in any given hour.

Now, compare that to our other crises

and our other areas
of concern as a society.

We have advanced medical technology,
we have defense technology,

we have scientific technology,

we even have advanced technology for art.

But our technology
for conservation is behind.

Think back to the most
difficult job you ever did.

Many of you would say
it was being a parent.

My mother described being a parent

as something that makes your life
far more amazing and far more difficult

than you could’ve ever possibly imagined.

I’ve been trying to help corals
become parents for over 10 years now.

And watching the wonder of life

has certainly filled me with amazement
to the core of my soul.

But I’ve also seen how difficult
it is for them to become parents.

The pillar corals spawned
again two weeks ago,

and we collected their eggs
and brought them back to the lab.

And here you see one embryo dividing,

alongside 14 eggs that didn’t fertilize

and will blow up.

They’ll be infected with bacteria,
they will explode

and those bacteria will threaten
the life of this one embryo

that has a chance.

We don’t know if it was our handling
methods that went wrong

and we don’t know

if it was just this coral on this reef,
always suffering from low fertility.

Whatever the cause,

we have much more work to do
before we can use baby corals

to grow or fix or, yes,
maybe save coral reefs.

So never mind that they’re worth
hundreds of billions of dollars.

Coral reefs are hardworking animals
and plants and microbes and fungi.

They’re providing us with art
and food and medicine.

And we almost took out
an entire generation of corals.

But a few made it anyway,
despite our best efforts,

and now it’s time for us to thank them
for the work they did

and give them every chance they have
to raise the coral reefs of the future,

their coral babies.

Thank you so much.

(Applause)

你做过的最
困难的工作是什么?

它在阳光下工作吗?

它是在
为家庭或社区提供食物吗?


为了保护生命和财产而日以继夜地工作吗?

是独自

工作还是在一个
不能保证成功

但可能会改善
人类健康或挽救生命的项目上工作?

它是在努力建造东西、
创造东西、制作艺术品吗?

是不是你一直不确定

自己是否被完全理解或欣赏的工作?

我们社区
中从事这些工作

的人们应该得到我们的关注、爱
和最深切的支持。

但人们并不是
我们社区中

唯一从事这些艰巨工作的人。

这些工作也
由我们星球上的植物、动物

和生态系统完成,

包括我研究的生态系统
:热带珊瑚礁。

珊瑚礁是农民。

它们为全世界数亿人提供食物、收入
和粮食安全

珊瑚礁是保安。

他们建造的结构
保护我们的海岸线

免受风暴潮和海浪的影响

,他们所容纳的生物系统过滤了水

,使我们的工作和娱乐更加安全。

珊瑚礁是化学家。

我们在珊瑚礁上发现的分子

对于寻找新的抗生素
和新的抗癌药物越来越重要。

珊瑚礁是艺术家。

他们建造的结构是

地球上最美丽的东西。

这种美丽是

许多
其他自然资源很少或很少的国家旅游业的基础。

因此,出于所有这些原因,
所有这些生态系统服务,

经济学家估计
世界珊瑚礁

的价值每年达数
千亿美元。

然而,尽管
我们为我们做了所有艰苦的工作并获得了

所有的财富,但

我们几乎已经尽
我们所能来摧毁它。

我们将鱼从海洋中取出

,我们添加了肥料、污水、

疾病、石油、污染和沉积物。

我们
用我们的船、我们的鳍、我们的推土机物理地践踏了珊瑚礁

,我们改变
了整个海洋的化学成分,让

海水变暖,让风暴变得更糟。

这些本身都是不好的,

但这些威胁会相互放大,相互叠加

,使彼此变得更糟。

我给你举个例子。

我生活和工作的地方,在库拉索岛,
几年前一场热带风暴过去了。

而在岛的东端,

那里的珊瑚礁完好无损且生机勃勃,

你几乎看不出
一场热带风暴已经过去。

但在小镇上,珊瑚因
过度捕捞和污染而死亡

,热带风暴
将死去的珊瑚带走,

并用它们作为
大棒杀死剩下的珊瑚。

这是我在博士期间研究的一种珊瑚
——

我非常了解它。

在这场风暴摧毁
了它一半的组织后,

它被藻类侵染

,藻类长满了组织
,珊瑚就死了。

这种威胁的放大,
这种因素的混合

就是杰里米杰克逊所说
的“滑坡到粘液”。

这甚至不是一个隐喻,
因为我们现在的许多珊瑚礁

实际上都是细菌
、藻类和粘液。

现在,这是谈话的一部分

,你可能希望
我开始

恳求我们所有人拯救珊瑚礁。

但我要坦白:

这句话让我发疯。

无论我是在推文
、新闻标题

还是保护手册的光鲜页面
中看到它,

这句话都让我感到困扰,

因为几十年来,作为保护主义者,
我们一直

在对珊瑚礁的死亡发出警报

然而,我遇到的几乎每个人,
无论受过多少教育

,都不确定珊瑚是什么
或它们来自哪里。

我们如何让人们
关心世界上的珊瑚礁,

因为这是一个
他们几乎无法理解的抽象事物?

如果他们不了解
珊瑚是什么或它来自哪里,

或者它是多么有趣、有趣
或美丽,

我们为什么要指望
他们关心拯救它们呢?

所以让我们改变它。

什么是珊瑚
,它来自哪里?

珊瑚
以多种不同的方式出生,

但最常见的是大规模产卵:
一个物种的所有个体

每年一个晚上,


他们当年产的所有卵释放

到水柱中,

包装成束 精子细胞。

那些捆绑到
海洋表面并分解。

希望——希望——
在海洋表面,

它们会遇到来自其他珊瑚的卵子和精子

这就是为什么你需要
在珊瑚礁上放很多珊瑚——

这样它们所有的卵都可以
在水面上遇到它们的匹配项。

当它们受精时,它们会
做任何其他动物卵子所做的事情:

一次又一次地分成两半。

每年在显微镜下拍摄这些照片

是我一年中最喜欢和最
神奇的时刻之一。

在所有这些细胞分裂结束时,
它们变成了一个游泳的幼虫——

一个罂粟种子大小的小脂肪团,


具有我们拥有的所有感觉系统。

它们可以感知颜色和光线、
质地、化学物质和 pH 值。

他们甚至可以感觉到压力波;
他们可以听到声音。

他们利用这些

才能在珊瑚礁的底部
寻找一个可以依附

并度过余生的地方。

所以想象
一下,当你只有两天大的时候,你会找到一个可以度过余生的地方

它们附着在
它们认为最合适的地方,

它们
在自己的下面建造一个骨架,

它们建造了一张嘴和触手,

然后它们开始
了建造世界珊瑚礁的艰巨工作。

一只珊瑚虫会
一次又一次地分裂自己,在自己下面

留下一个石灰岩骨架

,朝着太阳生长。

考虑到数百年和许多物种,

你得到的是一个巨大的
石灰岩结构

,在许多情况下可以从太空中看到,

上面覆盖
着这些勤劳动物的薄皮。

现在,地球上只有几百
种珊瑚,也许有 1000 种。

但是这些系统容纳了数以
百万计的其他物种,

而多样性是
稳定系统的原因,

也是我们寻找
新药的地方。

这就是我们寻找新食物来源的方式。

我很幸运能
在库拉索岛工作,

那里仍然有这样的珊瑚礁

但是,事实上,加勒比海
的大部分地区和我们世界

的大部分地区都更像这样。

科学家们
越来越详细地

研究了世界珊瑚礁的消失

,他们
越来越确定地记录了原因。

但在我的研究中,我
对向后看并不感兴趣。

我和我在库拉索岛的同事
们对未来

可能发生的事情很感兴趣。

我们有最微小的理由
保持乐观。

因为即使在

我们可能很久以前就可以
注销的这些珊瑚礁中,

我们有时也会看到小珊瑚
到达并无论如何都存活下来。

我们开始
认为小珊瑚可能有能力

适应一些成年人无法适应的条件

他们或许能够

更轻松地
适应这个人类星球。

因此,在我
与库拉索岛的同事一起进行的研究中,

我们试图
弄清楚小珊瑚

在那个关键的早期阶段需要

什么,它在寻找什么,

以及我们如何帮助
它度过这个过程。

我将向您展示
我们

为尝试回答这些问题所做的工作的三个示例。

几年前,我们使用 3D 打印机
进行了珊瑚选择调查——

不同的颜色和不同的纹理

,我们只是询问珊瑚
它们喜欢在哪里定居。

我们发现,
即使不涉及生物学,珊瑚

仍然喜欢白色和粉红色,
这是健康珊瑚礁的颜色。

他们更喜欢裂缝
、凹槽和洞,

在那里他们不会被
捕食者践踏

或吃掉。

所以我们可以利用这些知识,

我们可以回过头来说
我们需要在我们的保护项目中恢复那些因素——

那个粉红色、那个白色、那些裂缝、
那些坚硬的表面

如果我们要在水下放置一些东西
,比如海堤或码头,我们也可以使用这些知识。

我们可以选择使用

可能使
系统偏向那些珊瑚的材料、颜色和纹理。

现在,除了表面之外,

我们还研究了

将珊瑚吸引到珊瑚礁的化学和微生物信号。

从大约六年前
开始,我开始

在珊瑚栖息的表面培养细菌。

我一一尝试,

寻找可以
说服珊瑚定居和附着的细菌。

现在
我们的冰箱里有许多细菌菌株,

它们会可靠地导致

珊瑚经历沉降
和附着过程。

所以当我们说话时,

我在库拉索岛的同事
正在测试这些细菌

,看看它们是否会帮助我们
在实验室里培养更多的珊瑚定居者,

并看看当我们把这些珊瑚定居者

放回水下时,它们是否会更好地生存。

现在,除了这些工具之外,
我们还试图揭开未被

充分研究的物种的奥秘。

这是我最喜欢的珊瑚之一,
而且一直都是:

柱状珊瑚 dendrogyra cylindrus。

我喜欢它,因为它
的形状很可笑,

因为它的触手
很肥而且看起来很模糊

,而且它很罕见。

在珊瑚礁上找到其中一个是一种享受。

事实上,它是如此罕见,

以至于去年它被列为

濒危物种名单上的受威胁物种。

这部分是因为
在 30 多年的研究调查中,

科学家们从未发现
过幼柱珊瑚。

我们甚至
不确定它们是否还能繁殖,

或者它们是否仍在繁殖。

所以四年前,我们开始
在晚上跟踪这些

并观察我们是否能
弄清楚它们何时在库拉索岛产卵。

我们从佛罗里达州的同事那里得到了一些很好的建议

他们在 2007 年看到过一个,在 2008 年看到过一个

,最终我们弄清楚了
它们何时在库拉索产卵

并且我们抓住了它。

左边是一只雌性
,她的组织里有一些卵,

即将将它们释放到海水中。

右边是一个男性
,正在释放精子。

我们收集了这个,我们把它
带回了实验室,我们让它受精

,我们让小柱珊瑚
在我们的实验室里游泳。

感谢我们科学阿姨和叔叔的工作

,感谢
我们在库拉索

岛养殖其他珊瑚物种的 10 年实践,

我们让其中一些
幼虫完成了剩下的过程

并定居和附着,

并变成变态的珊瑚。

所以这是任何人见过的第一个柱状珊瑚宝宝

(掌声)

我不得不说——
如果你觉得熊猫宝宝很可爱

,那就更可爱了。

(笑声)

所以我们开始弄清楚
这个过程

的秘密,珊瑚繁殖的秘密,
以及我们可以如何帮助他们。

全世界都是如此;

科学家们正在寻找新的方法
来处理他们的胚胎

,让它们安顿下来,

甚至可能想出
在低温下保存它们的方法,

这样我们就可以保护
它们的遗传多样性

并更频繁地与它们合作。

但这仍然是低技术含量。

我们受到工作台上的空间、
实验室中的手

数以及
在任何给定小时内我们可以喝的咖啡数量的限制。

现在,将其与我们的其他危机

和我们
作为一个社会关注的其他领域进行比较。

我们有先进的医疗技术,
我们有国防技术,

我们有科学技术,

我们甚至有先进的艺术技术。

但是我们
的保护技术落后了。

回想一下
你做过的最困难的工作。

你们中的许多人会说
这是为人父母。

我的母亲将做父母描述

为让你的生活
比你想象的更精彩、更艰难的

事情。 十多年来,

我一直在努力帮助珊瑚
成为父母。

看着生命

的奇迹,我的灵魂深处肯定充满了惊奇。

但我也看到
了他们成为父母是多么困难。

柱状珊瑚
两周前再次产卵

,我们收集了它们的卵
并将它们带回实验室。

在这里,您会看到一个胚胎正在分裂,

还有 14 个未受精的卵子

会爆炸。

它们会被细菌感染,
它们会爆炸

,这些细菌会威胁
到这个有机会的胚胎的生命

我们不知道是不是我们的处理
方法出了问题

,我们也不

知道是不是只有这块珊瑚礁上的珊瑚,
总是遭受低生育率的困扰。

不管是什么原因,

在我们可以使用小珊瑚

来生长或修复之前,我们还有很多工作要做,或者,是的,
也许可以拯救珊瑚礁。

所以别介意它们价值
数千亿美元。

珊瑚礁是勤劳的
动植物、微生物和真菌。

他们为我们提供艺术
、食物和药品。

我们几乎淘汰
了整整一代珊瑚。

但是,尽管我们尽了最大的努力,但还是有一些人成功了

,现在是我们感谢
他们所做的工作的时候了,

并给了他们一切机会
来养育未来的珊瑚礁,

他们的珊瑚宝宝。

太感谢了。

(掌声)