A bacteriaeating virus that can prevent a global health crisis

Transcriber: Yuankai Gu
Reviewer: David DeRuwe

Do you ever think about how you could die?

I do, and whenever I do,
I catch myself thinking

about the most horrible ways of dying,
like car accidents, murder, or war.

But then the scientist in me
reminds me to be rational

and that the most likely way
that I could die

is from a regular human disease,

most likely at old age.

Statistically, the three most likely ways
a human being could die today

are from a cardiovascular disease, cancer,
or respiratory disease.

This list is probably
not surprising to you,

but there’s another silent threat
that is slowly emerging

and that could dominate this list
in just a few decades from now:

antimicrobial resistance, or AMR.

This abstract term is something
that WHO refers to

as one of the biggest threats
to global public health.

A highly-cited study left
by the government of the U.K in 2014

estimated that AMR could cause
up to 10 million deaths per year in 2050.

To put this number into perspective,

that is 25 percent more than all
of the predicted cancer deaths combined.

AMR is serious - so what exactly is it?

When microorganisms

such as viruses, bacteria, fungi,
or parasites affect your body,

they usually can be treated
with antimicrobial drugs -

for example, antibiotics if the infection
was caused by bacteria.

But bacteria and other
microorganisms evolve,

and every time we use
antimicrobial drugs to kill them,

there’s a tiny probability
that this microorganism

develops a mechanism to survive.

Paradoxically, this means
the more we use antimicrobial drugs,

the less these will work.

What worries me that in some instances,

we may be running into
an exponentially growing problem.

Six years ago, we had
about 1000 resistant cases a year per day.

Three years ago, we had 2000.

By now, we probably
have around 4000 cases,

and the number that associates to death
is growing accordingly.

It is important to understand
that AMR in this way acts like a pandemic,

but very differently from pandemics
you are more familiar with,

such as COVID-19 or the Spanish flu.

Such viral pandemics often feel like
a tsunami, delivering rapid destruction,

perhaps in multiple waves.

But tsunamis eventually also go
and leave space for recovery.

AMR is far more consequential
than a tsunami.

AMR compares more
to tectonic plates shift -

slowly evolving,

but with the potential to fundamentally
change life on this planet.

In AMR, antibiotic-resistant bacteria
are not only the most prominent example,

but also its biggest contributor.

And a reason for this
is that antibiotics have been a miracle;

antibiotics have saved hundreds
of millions of lives

since the discovery of penicillin in 1928.

And because antibiotics are so effective,
we use them everywhere,

even in agriculture or animal breeding.

But every time we do, we risk
increasing antibiotic resistance

in all of these areas.

And this is really troubling

because antibiotics are so essential
to our entire health care system.

Think about the last time
you used antibiotics,

perhaps to treat an infection,

or perhaps also to prevent
an infection after surgery.

Many patients need antibiotic treatment
against chronic diseases such as cancer.

Antibiotics currently enable
a host of treatment strategies;

without functioning antibiotics,
these would fail.

With this perspective
of heading into a post-antibiotic era,

what could help?

Although we’ve experienced
how devastating viruses can be,

ironically, in this case,

a virus could be actually one
of the solutions to the antibiotic crisis.

There’s one type of virus
that does not attack human cells,

but instead bacteria.

This type of virus
is called “bacteriophage.”

Bacteriophages or just phages
are fascinating.

It may be surprising to you

that phages are actually the most abundant
biological particle on Earth.

For every grain of sand this planet has,
there’s about a trillion in phages,

and luckily for us, they have been
battling bacteria for billions of years.

They hunt bacteria
because phages need bacteria

as a host to reproduce themselves.

They do so by infecting
bacteria with their DNA

and exploiting their internal mechanisms
to generate new copies of themselves.

Once enough new phage copies
are made in the bacteria,

these new phage copies will eventually
destroy the bacteria from the inside.

And exactly this mechanism
of infecting and killing

can be leveraged to treat
infections with bacteria even then,

and those become resistant to antibiotics.

This has a lot of potential.

And as a matter of fact,
it already has been done many times.

Especially East European countries
have been applying phage therapy

for almost a century now.

In countries like Georgia,
you will receive them in a pharmacy.

In Western countries the knowledge
about phage therapy

has fallen behind
the success of antibiotics.

But this is changing.

Scientists and clinicians
are rediscovering the power of phages

due to the pressure to treat
more and more resistant infections.

This new hope in phages motivates
around a dozen biotech companies

all over the world
to develop new phage therapies.

Most of those biotech companies

aim at capitalizing off
one of the biggest advantages of phages,

which is their incredible selectivity.

Every phage kills only
a very narrow range of bacteria,

often only even one subspecies.

For therapy, this means you will kill

only those bacteria
that actually make you sick.

This is in stark contrast
to most antibiotics

that also will kill bacteria
that benefit your health.

As you see, selectivity of phages,
could be a big advantage,

but it also means

that we can probably not just use
a single phage to kill all bacteria

but that we potentially need
an arsenal of different phages,

depending on the diversity of bacteria
we’re trying to target.

This increases the complexity and costs.

To circumvent this limitation,

many biotech companies
develop cocktails of several phages

to widen the range of bacteria that
can be targeted with a single medication.

But there’s a twist.

On one hand, we try to take advantage
of the selectivity of phages;

on the other hand, we’re forced to develop

broadly effective phage cocktails
to treat more patients.

Doesn’t this leave behind
the actual power of phages,

and what’s the difference
to the classic antibiotic approach?

With broadband approaches we might
be at risk of repeating the same events

that led us to AMR in the first place.

And it’s not so unlikely
that this can happen.

Scientists are very well aware
that bacteria also develop resistances

against phages quite rapidly.

A great solution would be
personalized phage cocktails

tailored to any individual patient.

But as you can imagine from ordering
an alcoholic cocktail at a bar,

personalized cocktails
take additional time and effort,

and phage cocktails are similar.

If you want to use a phage
as an ingredient to a cocktail,

you’ll first have to produce this phage
within its host bacteria.

This requires keeping bacteria alive
in a cultivated environment,

which is not always possible.

If you want to use a different phage,
you would have to develop a new process.

This is very difficult to standardize
and hence, to scale to new phages.

So wouldn’t it be great if we had
a single bacteria-free system

that could synthesize any type
of phage every time we need it

very much like a phage printer.

I’m very fortunate to be part of a team
that is tackling exactly this problem.

My colleagues invented
an artificial bacterial system

to produce any type of phage.

And this is not an easy task

because it requires, to emulate
a living organism, the host bacteria.

Remember how I told you that phages
infect bacteria with their DNA,

and that they do so to hijack bacteria,
to generate new copies of themselves?

This is exactly what we’re emulating.

And as you can imagine, there are
a ton of dynamic elements within bacteria

that change all the time.

The inside of bacteria
is made up of molecules

that you can think of as machines
that interact with each other

to translate phage DNA
into phage proteins.

Those phage proteins are
the building blocks of functional phages.

So a clever idea is to take all of the
molecules that are inside of bacteria

and put them into a more manageable
artificial environment.

To do this, we can grow
large amounts of bacteria up front,

eventually harvest them, and store it.

And once we need a new phage,

all we need to do now
is simulate infection

by adding the corresponding
phage DNA into the system,

All of this normally happens
within bacteria.

For us, it happens without bacteria.

Because in this way,

we’re removing the barrier of handling
living bacteria in phage production,

we can scale personalized
phage cocktails much easier

with three key advantages:

First, we’re potentially maximizing
efficacy in treating patients

because patients will receive a medication
optimized for them and not for others.

Second, we’re mitigating
the development of AMR

because bacteria would have
to simultaneously develop

many resistance mechanisms
against several phages.

The third advantage is not so obvious.

Unlike, for example, antibiotics,

phages are not a static chemical compound.

Like bacteria, they co-evolve to keep
using bacteria as their reproduction host.

This means whenever bacteria develop
a resistance against one particular phage,

there’s a very high chance
that there is already another phage

that has capabilities to overcome
even this new resistance mechanism.

And because with our system,
it is so easy to swap phages,

we can fully take advantage
of this natural evolution of phages.

We could even use the system
to speed up evolution.

Of course, this does not mean

that we can start treating
masses of patients immediately.

We first have to prove
that our synthetic phages

are both safe and effective
through clinical trials.

But once we can show this,

we can hopefully use the system
to help those patients

who are constantly struggling
with resistant infections.

I am certain that phages
will make a contribution

to solving the antibiotic crisis.

Although the phage community

is still waiting for the first trials
to confirm efficacies of phage therapy,

there have been dozens
of positive reports all over the world.

From a teenage girl
in the UK with cystic fibrosis,

who had an antibiotic resistant infection
after a lung transplantation,

to a man in Israel whose infected leg
was saved from amputation,

phages have demonstrated their power.

Such and many other reports
have been even so convincing

that Belgian regulators recently decided
to speed up access to phage therapy

by systematically allowing
personalized therapy with natural phages

without clinical trials.

This is unique in Western medicine.

We urgently need
such forms of productivity

because the rate at which AMR
has spread is already higher

than the rate at which
new antimicrobial drugs are approved.

With much more awareness
for the significance of AMR,

clear economic incentives
for biotech companies,

and new ideas for regulatory pathways,

I’m certain we can use phages
with other antimicrobial drugs

to stop AMR from becoming
the cause of 10 million deaths per year.

Thank you.

(Applause)

抄写
员:Guyuankai Gu 审稿人:David DeRuwe

你有没有想过你会怎么死?

我会,而且每当我这样做时,我都会

想起最可怕的死亡方式,
比如车祸、谋杀或战争。

但后来我内心的科学家
提醒我要理性

,我最有
可能死去的方式

是死于一种普通的人类疾病,

很可能是在老年。

据统计,当今人类最有可能死亡的三种方式

是心血管疾病、癌症
或呼吸系统疾病。

这份清单
对你来说可能并不奇怪,

但还有另一个无声的
威胁正在慢慢出现

,并且可能
在未来几十年内主导这个清单:

抗菌素耐药性,或 AMR。

这个抽象的术语被
世卫组织

称为对全球公共卫生的最大威胁之一

英国政府在 2014 年留下的一项被高度引用的研究

估计,到 2050 年,AMR 每年可能导致
多达 1000 万人死亡。

从这个数字来看,

这比
所有预测的癌症死亡人数总和高出 25%。

AMR 是严重的 - 那么它到底是什么?

当病毒、细菌、真菌
或寄生虫等微生物影响您的身体时

,通常可以
用抗菌药物治疗它们 -

例如,如果感染
是由细菌引起的,则可以使用抗生素。

但是细菌和其他
微生物会进化

,每次我们使用
抗菌药物杀死它们时,这种微生物

都有很小的概率

发展出一种生存机制。

矛盾的是,这
意味着我们使用抗菌药物的次数越多,它们

的作用就越小。

让我担心的是,在某些情况下,

我们可能会
遇到呈指数增长的问题。

六年前,我们
每年大约有 1000 例耐药病例。

三年前,我们有 2000 例。

到现在,我们可能
有大约 4000 例

,与死亡有关的人数
也在相应增加。

重要的是要
了解 AMR 以这种方式表现得像大流行病,

但与
您更熟悉的大流行病(

例如 COVID-19 或西班牙流感)截然不同。

这种病毒性大流行通常感觉就像
一场海啸,带来迅速的破坏,

可能是多波。

但海啸最终也会过去
,为恢复留下空间。

AMR 比海啸更严重

AMR 更像
是构造板块的变化——

缓慢演化,

但有可能从根本
上改变这个星球上的生命。

在 AMR 中,耐抗生素
细菌不仅是最突出的例子,

也是其最大的贡献者。

其中一个原因
是抗生素一直是个奇迹。 自 1928 年发现青霉素以来,

抗生素已经挽救
了数亿人的生命

由于抗生素非常有效,
我们在任何地方都使用它们,

甚至在农业或动物养殖中。

但每次我们这样做,我们都会冒着
增加

所有这些领域的抗生素耐药性的风险。

这确实令人不安,

因为抗生素
对我们的整个医疗保健系统至关重要。

想想
你上次使用抗生素

是什么时候,可能是为了治疗感染,

或者也可能是为了预防
手术后的感染。

许多患者需要抗生素治疗来
对抗癌症等慢性疾病。

抗生素目前可以
实现许多治疗策略;

如果没有有效的抗生素,
这些都会失败。

以这种
进入后抗生素时代的观点,有

什么可以帮助的?

尽管我们已经体验过
病毒的破坏性,但

具有讽刺意味的是,在这种情况下

,病毒实际上可能是
抗生素危机的解决方案之一。

有一种
病毒不会攻击人体细胞,

而是攻击细菌。

这种病毒
被称为“噬菌体”。

噬菌体或只是噬菌体
是令人着迷的。

噬菌体实际上是地球上最丰富的
生物粒子,您可能会感到惊讶。

对于这个星球上的每一粒沙子,
都有大约一万亿个噬菌体

,对我们来说幸运的是,它们已经
与细菌作斗争了数十亿年。

它们捕食细菌
是因为噬菌体需要细菌

作为宿主来繁殖自己。

他们通过
用自己的 DNA 感染细菌

并利用它们的内部机制
来生成自己的新副本来做到这一点。

一旦在细菌中产生了足够多的新噬菌体拷贝

这些新的噬菌体拷贝最终会
从内部摧毁细菌。 即使在那时,

这种
感染和杀灭机制

也可以用来
治疗细菌感染,

而那些细菌就会对抗生素产生抗药性。

这有很大的潜力。

事实上,
它已经做过很多次了。

尤其是东欧国家

,近一个世纪以来一直在应用噬菌体疗法。

在格鲁吉亚等国家/地区,
您将在药房收到它们。

在西方国家,
关于噬菌体疗法的知识

已经落后
于抗生素的成功。

但这种情况正在改变。 由于治疗越来越多的耐药性感染的压力,

科学家和临床医生
正在重新发现噬菌体的力量

噬菌体的这一新希望促使
全世界大约十几家生物技术公司

开发新的噬菌体疗法。

这些生物技术公司中的大多数

旨在
利用噬菌体的最大优势之一,

即它们令人难以置信的选择性。

每个噬菌体只能杀死
非常有限的细菌,

通常甚至只杀死一个亚种。

对于治疗,这意味着您只会杀死

那些实际上使您生病的细菌。

这与大多数抗生素形成鲜明对比
,大多数

抗生素也会杀死
有益健康的细菌。

如您所见,噬菌体的选择性
可能是一个很大的优势,

但这也

意味着我们可能不仅可以使用
单个噬菌体杀死所有细菌,

而且我们可能需要
不同噬菌体的库,

这取决于我们细菌的多样性
‘正试图瞄准。

这增加了复杂性和成本。

为了规避这一限制,

许多生物技术公司
开发了几种噬菌体的混合物,

以扩大
单一药物可以靶向的细菌范围。

但有一个转折点。

一方面,我们试图
利用噬菌体的选择性;

另一方面,我们被迫开发

广泛有效的噬菌体鸡尾酒
来治疗更多的患者。

这不会留下
噬菌体的实际力量

吗?与经典的抗生素方法有什么区别?

使用宽带方法,我们
可能有重复

最初导致我们使用 AMR 的相同事件的风险。

而且这种情况发生的可能性也不是很大

科学家们非常清楚
,细菌也会

很快对噬菌体产生抗药性。

一个很好的解决方案是

为任何个体患者量身定制的个性化噬菌体鸡尾酒。

但是你可以想象
在酒吧点一杯酒精鸡尾酒,

个性化鸡尾酒
需要额外的时间和精力

,噬菌体鸡尾酒也是类似的。

如果您想使用噬菌体
作为鸡尾酒的成分,

您首先必须
在其宿主细菌中产生这种噬菌体。

这需要
在培养环境中保持细菌存活,

这并不总是可行的。

如果你想使用不同的噬菌体,
你必须开发一个新的过程。

这很难标准化
,因此很难扩展到新的噬菌体。

因此,如果我们有
一个单一的无菌系统

,可以
在我们每次需要时合成任何类型的噬菌体,

就像噬菌体打印机一样,那不是很好。

我很幸运能成为解决这个问题的团队的一员

我的同事发明
了一种人工细菌系统

来生产任何类型的噬菌体。

这不是一件容易的事,

因为它需要
宿主细菌来模拟活的有机体。

还记得我是如何告诉你噬菌体
用它们的 DNA 感染细菌的

,它们这样做是为了劫持细菌
,生成它们自己的新副本吗?

这正是我们正在效仿的。

正如你可以想象的那样,
细菌中有大量的动态元素一直在

变化。

细菌
内部由分子组成

,您可以将这些分子视为
相互相互作用

以将噬菌体 DNA
转化为噬菌体蛋白的机器。

这些噬菌体蛋白是
功能性噬菌体的组成部分。

因此,一个聪明的想法是
将细菌内部的所有分子

放入更易于管理的
人工环境中。

为此,我们可以预先培养
大量细菌,

最终收获并储存起来。

一旦我们需要一个新的噬菌体

,我们现在需要做的
就是

通过将相应的
噬菌体 DNA 添加到系统中来模拟感染,

所有这些通常发生
在细菌内。

对我们来说,它在没有细菌的情况下发生。

因为通过这种方式,

我们消除了
在噬菌体生产中处理活细菌的障碍,

我们可以更轻松地扩展个性化的
噬菌体混合物,

具有三个关键优势:

首先,我们有可能最大限度地提高
治疗患者的疗效,

因为患者将接受优化的药物治疗
为他们而不是为其他人。

其次,我们正在减缓
AMR 的发展,

因为细菌
必须同时发展

许多
针对几种噬菌体的抗性机制。

第三个优势不是那么明显。

与例如抗生素不同,

噬菌体不是静态化合物。

像细菌一样,它们共同进化以继续
使用细菌作为其繁殖宿主。

这意味着每当细菌
对一种特定的噬菌体产生抗性时,

很有可能
已经有另一种噬菌体

能够
克服这种新的抗性机制。

而且由于我们的系统
很容易交换噬菌体,

我们可以充分
利用噬菌体的这种自然进化。

我们甚至可以使用该系统
来加速进化。

当然,这并不

意味着我们可以立即开始治疗
大量患者。

我们首先要通过临床试验
证明我们合成的噬菌体

既安全又有效

但是一旦我们能够证明这一点,

我们就有希望使用该系统
来帮助

那些不断
与耐药性感染作斗争的患者。

我确信噬菌体

将为解决抗生素危机做出贡献。

尽管噬菌体界

仍在等待第一次试验
以确认噬菌体治疗的有效性,

但全世界已经有数
十个阳性报告。


英国一名患有囊性纤维化的少女,在肺移植后

感染抗生素耐药性

到以色列一名因截肢而感染腿部的男子

噬菌体已经展示了它们的力量。

此类报告和许多其他
报告甚至如此令人信服

,以至于比利时监管机构最近决定

通过系统性地允许在没有临床试验的情况下
使用天然噬菌体进行个性化治疗,从而加快获得噬菌体治疗

这在西医中是独一无二的。

我们迫切需要
这种形式的生产力,

因为 AMR
的传播速度已经高于

新抗菌药物的批准速度。

随着
对 AMR 重要性的更多认识、

对生物技术公司的明确经济激励

以及监管途径的新思路,

我确信我们可以使用噬菌体
和其他抗菌药物

来阻止 AMR 成为
每年 1000 万人死亡的原因。

谢谢你。

(掌声)