What causes antibiotic resistance Kevin Wu

What if I told you there were trillions
of tiny bacteria all around you?

It’s true.

Microorganisms called bacteria
were some of the first life forms

to appear on Earth.

Though they consist of only a single cell,

their total biomass is greater than
that of all plants and animals combined.

And they live virtually everywhere:

on the ground, in the water,

on your kitchen table, on your skin,

even inside you.

Don’t reach for the panic button just yet.

Although you have 10 times
more bacterial cells inside you

than your body has human cells,

many of these bacteria
are harmless or even beneficial,

helping digestion and immunity.

But there are a few bad apples
that can cause harmful infections,

from minor inconveniences
to deadly epidemics.

Fortunately, there are amazing medicines
designed to fight bacterial infections.

Synthesized from chemicals or
occurring naturally in things like mold,

these antibiotics kill
or neutralize bacteria

by interrupting cell wall synthesis

or interfering with vital processes
like protein synthesis,

all while leaving human cells unharmed.

The deployment of antibiotics
over the course of the 20th century

has rendered many previously
dangerous diseases easily treatable.

But today, more and more
of our antibiotics

are becoming less effective.

Did something go wrong
to make them stop working?

The problem is not with the antibiotics
but the bacteria they were made to fight,

and the reason lies in Darwin’s theory
of natural selection.

Just like any other organisms,

individual bacteria
can undergo random mutations.

Many of these mutations
are harmful or useless,

but every now and then,
one comes along that gives its organism

an edge in survival.

And for a bacterium,

a mutation making it resistant
to a certain antibiotic

gives quite the edge.

As the non-resistant bacteria
are killed off,

which happens especially quickly
in antibiotic-rich environments,

like hospitals,

there is more room and resources
for the resistant ones to thrive,

passing along only the mutated genes
that help them do so.

Reproduction
isn’t the only way to do this.

Some can release their DNA upon death
to be picked up by other bacteria,

while others use a method
called conjugation,

connecting through pili
to share their genes.

Over time, the resistant
genes proliferate,

creating entire strains
of resistant super bacteria.

So how much time do we have
before these superbugs take over?

Well, in some bacteria,
it’s already happened.

For instance, some strands
of staphylococcus aureus,

which causes everything from
skin infections to pneumonia and sepsis,

have developed into MRSA,

becoming resistant
to beta-lactam antibiotics,

like penicillin, methicillin,
and oxacillin.

Thanks to a gene that replaces the protein
beta-lactams normally target and bind to,

MRSA can keep making
its cell walls unimpeded.

Other super bacteria, like salmonella,

even sometimes produce enzymes
like beta-lactams

that break down antibiotic attackers
before they can do any damage,

and E. coli, a diverse group of bacteria

that contains strains that cause
diarrhea and kidney failure,

can prevent the function of antibiotics,

like quinolones, by actively
booting any invaders

that manage to enter the cell.

But there is good news.

Scientists are working to stay
one step ahead of the bacteria,

and although development
of new antibiotics

has slowed in recent years,

the World Health Organization has made it
a priority to develop novel treatments.

Other scientists are investigating
alternate solutions,

such as phage therapy
or using vaccines to prevent infections.

Most importantly, curbing the excessive
and unnecessary use of antibiotics,

such as for minor infections
that can resolve on their own,

as well as changing medical practice
to prevent hospital infections,

can have a major impact

by keeping more
non-resistant bacteria alive

as competition for resistant strains.

In the war against super bacteria,
deescalation may sometimes work better

than an evolutionary arms race.

如果我告诉你周围有数以万亿计
的微小细菌怎么办?

这是真的。

被称为细菌的微生物

地球上最早出现的一些生命形式。

尽管它们仅由一个细胞组成,但

它们的总生物量大
于所有植物和动物的总和。

它们几乎无处不在:

地上、水中

、厨房餐桌上、皮肤上,

甚至是你的内心。

暂时不要伸手去拿紧急按钮。

虽然你
体内的细菌细胞

比你体内的人体细胞多 10 倍,但

其中许多细菌
是无害的,甚至是有益的,

有助于消化和免疫。

但是有一些坏
苹果会导致有害感染,

从轻微的不便
到致命的流行病。

幸运的是,有一些神奇的药物
可以对抗细菌感染。 这些抗生素

由化学物质合成或
天然存在于霉菌等物质中,

通过中断细胞壁合成

或干扰蛋白质合成等重要过程来杀死或中和细菌

,同时使人体细胞不受伤害。

在 20 世纪的过程中,抗生素的使用

使许多以前
危险的疾病变得容易治疗。

但是今天,我们越来越多

抗生素变得不那么有效了。

是不是出了什么
问题让他们停止工作?

问题不在于抗生素
,而在于它们用来对抗的细菌

,原因在于达尔文
的自然选择理论。

就像任何其他生物一样,

单个细菌
可以发生随机突变。

这些突变中
有许多是有害的或无用的,

但时不时会出现
一种突变,使其有机体

在生存中具有优势。

对于细菌而言,

使其
对某种抗生素

产生抗药性的突变具有相当大的优势。

随着非耐药细菌
被杀死,

这种情况
在医院等富含抗生素的环境中发生得特别快,耐药细菌

有更多的空间和
资源茁壮成长,

只传递帮助它们生长的突变基因

复制并不是做到这一点的唯一方法。

有些人可以在死亡后释放他们的 DNA
以被其他细菌拾取,

而另一些人则使用一种
称为共轭的方法,

通过菌毛连接
以分享他们的基因。

随着时间的推移,抗性
基因增殖,

产生整个
抗性超级细菌菌株。

那么
在这些超级细菌接管之前,我们还有多少时间呢?

好吧,在某些细菌中,
它已经发生了。

例如

,导致从
皮肤感染到肺炎和败血症等各种疾病的一些金黄色葡萄球菌

已经发展成

耐甲氧西林金黄色葡萄球菌,对青霉素、甲氧西林
和苯唑西林等β-内酰胺类抗生素产生耐药性。

由于取代了
通常靶向和结合的蛋白质 β-内酰胺的基因,

MRSA 可以保持
其细胞壁畅通无阻。

其他超级细菌,如沙门氏菌,

有时甚至会产生
诸如 β-内酰胺之类的酶

,在抗生素攻击
者造成任何损害之前将其分解,

而大肠杆菌,一种

包含导致
腹泻和肾衰竭的菌株的多样化细菌,

可以预防

通过积极
引导任何

设法进入细胞的入侵者来发挥抗生素(如喹诺酮类药物)的作用。

但有好消息。

科学家们正在努力
比细菌领先一步

,尽管近年来
新抗生素的开发

速度有所放缓,但

世界卫生组织已将
开发新疗法列为优先事项。

其他科学家正在研究
替代解决方案,

例如噬菌体疗法
或使用疫苗来预防感染。

最重要的是,遏制抗生素的过度
和不必要的使用,

例如
可以自行解决的轻微感染,

以及改变医疗实践
以防止医院感染,

可以

通过保持更多
非耐药细菌

作为竞争而产生重大影响 对于耐药菌株。

在与超级细菌的战争中,
降级有时可能

比进化的军备竞赛更有效。