How batteries work Adam Jacobson

You probably know the feeling.

Your phone utters
its final plaintive “bleep”

and cuts out in the middle of your call.

In that moment, you may feel more
like throwing your battery across the room

than singing its praises,

but batteries are a triumph of science.

They allow smartphones
and other technologies to exist

without anchoring us
to an infernal tangle of power cables.

Yet even the best batteries
will diminish daily,

slowly losing capacity
until they finally die.

So why does this happen,

and how do our batteries even store
so much charge in the first place?

It all started in the 1780s
with two Italian scientists,

Luigi Galvani and Alessandro Volta,

and a frog.

Legend has it that as Galvani
was studying a frog’s leg,

he brushed a metal instrument
up against one of its nerves,

making the leg muscles jerk.

Galvani called this animal electricity,

believing that a type of electricity
was stored in the very stuff of life.

But Volta disagreed,

arguing that it was the metal itself
that made the leg twitch.

The debate was eventually settled
with Volta’s groundbreaking experiment.

He tested his idea with a stack
of alternating layers of zinc and copper,

separated by paper or cloth
soaked in a salt water solution.

What happened in Volta’s cell is something
chemists now call oxidation and reduction.

The zinc oxidizes,
which means it loses electrons,

which are, in turn, gained by the ions in
the water in a process called reduction,

producing hydrogen gas.

Volta would have been shocked
to learn that last bit.

He thought the reaction
was happening in the copper,

rather than the solution.

None the less,
we honor Volta’s discovery today

by naming our standard unit
of electric potential “the volt.”

This oxidation-reduction cycle creates
a flow of electrons between two substances

and if you hook a lightbulb
or vacuum cleaner up between the two,

you’ll give it power.

Since the 1700s, scientists have improved
on Volta’s design.

They’ve replaced the chemical solution
with dry cells filled with chemical paste,

but the principle is the same.

A metal oxidizes,
sending electrons to do some work

before they are regained
by a substance being reduced.

But any battery has a finite
supply of metal,

and once most of it has oxidized,
the battery dies.

So rechargeable batteries give us
a temporary solution to this problem

by making the oxidation-reduction
process reversible.

Electrons can flow back
in the opposite direction

with the application of electricity.

Plugging in a charger draws
the electricity from a wall outlet

that drives the reaction
to regenerate the metal,

making more electrons available
for oxidation the next time you need them.

But even rechargeable batteries
don’t last forever.

Over time, the repetition of this process
causes imperfections

and irregularities in the metal’s surface
that prevent it from oxidizing properly.

The electrons are no longer available
to flow through a circuit

and the battery dies.

Some everyday rechargeable batteries

will die after only hundreds
of discharge-recharge cycles,

while newer, advanced batteries
can survive and function for thousands.

Batteries of the future
may be light, thin sheets

that operate on the principles
of quantum physics

and last for hundreds
of thousands of charge cycles.

But until scientists find a way
to take advantage of motion

to recharge your cell battery,
like cars do,

or fit solar panels
somewhere on your device,

plugging your charger into the wall,

rather than expending
one battery to charge another

is your best bet to forestall
that fatal “bleep.”

你大概知道那种感觉。

您的电话会
发出最后一声哀怨的“哔哔”声

,并在通话过程中中断。

在那一刻,你可能更
想把电池扔到房间的另一头

,而不是赞美它,

但电池是科学的胜利。

它们使智能手机
和其他技术得以存在,

而无需将我们固定
在地狱般纠结的电源线上。

然而,即使是最好的电池
也会每天减少,

慢慢失去容量,
直到最终耗尽。

那么为什么会发生这种情况

,我们的电池
最初是如何储存这么多电荷的呢?

这一切都始于 1780 年代
,两位意大利科学家

Luigi Galvani 和 Alessandro Volta

以及一只青蛙。

传说伽伐尼
在研究一只青蛙的腿时,

他用金属
仪器摩擦它的一条神经,

使腿部肌肉抽搐。

伽伐尼称这种动物为电,

认为一种
电储存在生命的物质中。

但沃尔塔不同意,

认为是金属本身
使腿抽搐。

这场争论最终
以沃尔特的开创性实验而告终。

他用
一堆交替的锌和铜层测试了他的想法,这些层


浸泡在盐水中的纸或布隔开。

伏打电池中发生的事情是
化学家现在所说的氧化和还原。

锌会氧化,
这意味着它会失去电子

,而电子又会通过水中的离子
在称为还原的过程中获得,从而

产生氢气。

沃尔塔
得知最后一点会感到震惊。

他认为
反应发生在铜中,

而不是溶液中。

尽管如此,
我们还是

通过将我们的标准
电势单位命名为“伏特”来纪念伏打的发现。

这种氧化还原循环会
在两种物质之间产生电子流

,如果你将灯泡
或真空吸尘器挂在两者之间,

你就会给它供电。

自 1700 年代以来,科学家们
对 Volta 的设计进行了改进。

他们
用充满化学浆的干电池代替了化学溶液,

但原理是一样的。

金属氧化,
发送电子做一些工作,

然后
被还原的物质重新获得。

但是任何电池
的金属供应都是有限的

,一旦大部分金属被氧化
,电池就会报废。

因此,可充电电池通过使氧化还原过程可逆,为我们提供了
一个临时解决方案

电子可以通过施加电流
以相反的方向流回

插入充电器会
从墙上的插座中汲取电力,

从而驱动反应
以再生金属,

从而
在下次需要时提供更多可用于氧化的电子。

但即使是可充电电池
也不会永远持续下去。

随着时间的推移,这个过程的重复

导致金属表面出现缺陷和不规则性,
从而阻止其正常氧化。

电子不再可
用于流过电路

并且电池耗尽。

一些日常可充电电池

仅在数百
次放电-再充电循环后就会耗尽,

而更新的、先进的电池
可以存活并运行数千次。

未来的电池
可能是轻薄的薄片

,根据量子物理学原理运行,

并持续数
十万次充电循环。

但是,除非科学家找到
一种利用运动

为电池充电的方法,
就像汽车一样,

或者在设备的某个位置安装太阳能电池板,否则最好

将充电器插入墙上,

而不是用
一个电池为另一个电池充电。

阻止致命的“哔哔声”。