How do wind turbines work Rebecca J. Barthelmie and Sara C. Pryor

Every 24 hours, wind generates
enough kinetic energy

to produce roughly 35 times more
electricity than humanity uses each day.

And unlike coal or oil, this resource
is totally renewed each day.

So how can we harness this incredible
amount of energy,

and is it possible to create a world
powered entirely by wind?

The basic principle of wind energy
is simple.

A series of sails or blades
mounted around a rotor catch the wind

and translate its kinetic energy
into rotational energy.

Traditional windmills use that rotational
energy to grind wheat or pump water.

But in modern wind turbines, it turns
a generator that creates electricity.

This conversion from wind
to rotational energy to electricity

has defined wind turbines since their
invention in the late 19th century.

And there are three primary factors
that determine just how much energy

they can produce: the size and orientation
of the blades,

the blade’s aerodynamic design,
and the amount of wind turning the rotor.

First up, blade orientation.

Wind turbines can be designed
with their rotor

on a vertical axis or a horizontal axis.

Vertical blades can pick up wind
coming from any direction,

but with much less efficiency
than horizontal axis rotors.

Horizontal designs allow blades to capture
the wind’s full force

by tracking the wind’s direction
and turning to face it.

This turning process is called yawing,

and older windmills achieved it
through manual monitoring.

Today, wind sensors and computer systems
automatically adjust the blades

with expert precision
to capture as much energy as possible.

Outside rotor orientation,

the blades themselves need to be
shaped to maximize efficiency.

While early designs used flat blades,

modern blades are curved
like airplane wings.

Wind travels faster over
the curved surface,

creating a low-pressure pocket
above the blade that forces it upwards.

Since the amount of lift depends
on the angle

at which the wind is moving
relative to the blade,

modern blades also incorporate a twist,

optimizing how much of the blade can cut
into the wind.

Made of fiberglass and resin layers,
these blades are strong enough

to operate through rain, lightning,
and blistering sunlight for over 20 years.

Even with aerodynamic blades
and a horizontal rotor,

a wind turbine can only capture wind
if it’s in a windy environment.

Wind speeds typically increase the higher
into the atmosphere you travel.

So today, most turbines are well
over 100 meters tall,

with equally large rotor diameters.

A turbine of this height and size can
capture a huge amount of wind,

generating enough electricity every
year to power 750 American homes.

A wind farm of 200 similarly sized
turbines

could power over 150,000 American homes—
or twice as many European homes—

for an entire year.

Offshore wind farms contain an even
greater number of even larger turbines.

In 2019, the largest wind turbine
ever built

began operating off the coast
of the Netherlands.

With a rotor diameter of 220 meters,
just one of these turbines

can meet the annual power needs
of 16,000 European households.

Despite its amazing potential,
wind energy still faces challenges.

Wind may be a free and unlimited fuel,

but no matter how large or efficient
a turbine is

there’s a mathematical limit to how much
wind it can convert into electricity.

German physicist Albert Betz calculated

that since some wind must remain
to keep the blades spinning,

a turbine can only ever capture 59.3%
of the wind’s energy.

Additionally, some people feel turbines
disrupt natural scenery,

and wind energy’s intermittent
availability

can make it difficult to integrate
into electrical grids.

But even with these challenges,
modern wind turbines have made wind energy

the most efficient and inexpensive
source of electricity.

Wind turbines already provide essential
energy for communities around the world.

And for many farmers,
hosting a wind turbine

can be a reliable source
of additional income.

With continued improvements
in wind forecasting,

electrical grid infrastructure
and energy storage,

wind power might blow away
all our energy problems.

每 24 小时,风能产生
足够的动能

,产生的
电力大约是人类每天使用量的 35 倍。

与煤炭或石油不同,这种资源
每天都会完全更新。

那么,我们如何才能利用如此
多的能量

,是否有可能创造一个
完全由风驱动的世界呢?

风能的基本原理
很简单。

安装在转子周围的一系列风帆或叶片捕捉风

并将其动能
转化为旋转能。

传统的风车利用这种旋转
能量来研磨小麦或抽水。

但在现代风力涡轮机中,它
转动发电机来发电。 自 19 世纪后期发明以来,

这种从风能
到旋转能再到电能

的转换定义了风力涡轮机

决定它们能产生
多少能量的三个主要因素是

:叶片的尺寸和方向

、叶片的空气动力学设计
以及转动转子的风量。

首先,刀片方向。

风力涡轮机可以设计
成其转子

位于垂直轴或水平轴上。

垂直叶片可以吸收
来自任何方向的风,

但效率
比水平轴转子低得多。

水平设计允许叶片

通过跟踪风的方向
并转向面对它来捕捉风的全部力量。

这种转向过程称为偏航,

较旧的风车
通过人工监控来实现。

今天,风传感器和计算机系统

以专家级的精度自动调整叶片,
以尽可能多地捕获能量。

在转子方向之外

,叶片本身需要
成形以最大限度地提高效率。

虽然早期的设计使用扁平叶片,但

现代叶片
像飞机机翼一样弯曲。


在弯曲的表面上传播得更快

,在叶片上方形成一个低压袋,迫使它向上。

由于升力的大小取决于

风相对于叶片移动的角度,因此

现代叶片还加入了扭转,

优化了叶片可以
切入风中的程度。 这些刀片

由玻璃纤维和树脂层制成,
足够坚固,

可以在雨水、闪电
和强烈的阳光下运行 20 多年。

即使使用气动叶片
和水平转子

,风力涡轮机也
只能在有风的环境中捕获风。

风速通常会随着
进入您旅行的大气层而增加。

所以今天,大多数涡轮机的高度都
超过 100 米,

转子直径也同样大。

这种高度和大小的涡轮机可以
捕获大量风力,

每年产生的电力足以
为 750 个美国家庭供电。

一个由 200 台类似大小的
涡轮机组成的风电场

可以为超过 150,000 户美国家庭(
或两倍于欧洲家庭)供电

一整年。

海上风电场包含
更多数量甚至更大的涡轮机。

2019 年,有史以来最大的风力涡轮机

开始在荷兰沿海运行

这些涡轮机的转子直径为 220 米,
仅其中一台

即可满足
16,000 个欧洲家庭的年电力需求。

尽管潜力巨大,但
风能仍面临挑战。

风可能是一种免费且无限的燃料,

但无论涡轮机有多大或有多大效率,

它可以转化为电能的风量都有一个数学限制。

德国物理学家阿尔伯特·贝茨计算

出,由于必须保留一些风
来保持叶片旋转,因此

涡轮机只能捕获 59.3%
的风能。

此外,有些人认为涡轮机
破坏了自然风光,

而风能的间歇性
可用性

可能使其难以
融入电网。

但即使面临这些挑战,
现代风力涡轮机也使风能

成为最有效和最便宜
的电力来源。

风力涡轮机已经为
世界各地的社区提供了必不可少的能源。

对于许多农民来说,
托管风力涡轮机

可以成为可靠
的额外收入来源。

随着
风力预报、

电网基础设施
和能源储存的不断改进,

风力发电可能会
解决我们所有的能源问题。