Why dont poisonous animals poison themselves Rebecca D. Tarvin

One fine day,

when Charles Darwin was still
a student at Cambridge,

the budding naturalist tore some
old bark off a tree

and found two rare beetles underneath.

He’d just taken one beetle in each hand
when he spotted a third beetle.

Stashing one of the insects
in his mouth for safekeeping,

he reached for the new specimen –

when a sudden spray of hot,
bitter fluid scalded his tongue.

Darwin’s assailant
was the bombardier beetle.

It’s one of thousands of animal species,

like frogs,

jellyfish,

salamanders,

and snakes,

that use toxic chemicals
to defend themselves –

in this case, by spewing poisonous liquid
from glands in its abdomen.

But why doesn’t this caustic substance,
ejected at 100 degrees Celsius,

hurt the beetle itself?

In fact, how do any toxic animals
survive their own secretions?

The answer is that they use one
of two basic strategies:

securely storing these compounds

or evolving resistance to them.

Bombardier beetles use the first approach.

They store ingredients for their poison
in two separate chambers.

When they’re threatened, the valve
between the chambers opens

and the substances combine
in a violent chemical reaction

that sends a corrosive spray
shooting out of the glands,

passing through a hardened chamber that
protects the beetle’s internal tissues.

Similarly, jellyfish package
their venom safely

in harpoon-like structures
called nematocysts.

And venomous snakes store their
flesh-eating, blood-clotting compounds

in specialized compartments
that only have one exit:

through the fangs
and into their prey or predator.

Snakes also employ the second strategy:
built-in biochemical resistance.

Rattlesnakes and other types of vipers
manufacture special proteins

that bind and inactivate venom
components in the blood.

Meanwhile, poison dart frogs have also
evolved resistance to their own toxins,

but through a different mechanism.

These tiny animals defend themselves
using hundreds of bitter-tasting compounds

called alkaloids

that they accumulate from consuming
small arthropods like mites and ants.

One of their most potent alkaloids
is the chemical epibatidine,

which binds to the same receptors
in the brain as nicotine

but is at least ten times stronger.

An amount barely heavier than
a grain of sugar would kill you.

So what prevents poison frogs
from poisoning themselves?

Think of the molecular target
of a neurotoxic alkaloid as a lock,

and the alkaloid itself as the key.

When the toxic key slides into the lock,

it sets off a cascade of chemical
and electrical signals

that can cause paralysis,

unconsciousness,

and eventually death.

But if you change the shape of the lock,
the key can’t fit.

For poison dart frogs and many other
animals with neurotoxic defenses,

a few genetic changes alter
the structure of the alkaloid-binding site

just enough to keep the neurotoxin
from exerting its adverse effects.

Poisonous and venomous animals

aren’t the only ones that can develop
this resistance:

their predators and prey can, too.

The garter snake, which dines
on neurotoxic salamanders,

has evolved resistance
to salamander toxins

through some of the same genetic changes
as the salamanders themselves.

That means that only the most toxic
salamanders can avoid being eaten—

and only the most resistant snakes
will survive the meal.

The result is that the genes providing
the highest resistance and toxicity

will be passed on in greatest quantities
to the next generations.

As toxicity ramps up, resistance does too,

in an evolutionary arms race
that plays out over millions of years.

This pattern appears over and over again.

Grasshopper mice resist painful
venom from scorpion prey

through genetic changes
in their nervous systems.

Horned lizards readily
consume harvester ants,

resisting their envenomed sting
with specialized blood plasma.

And sea slugs eat jellyfish nematocysts,

prevent their activation
with compounds in their mucus,

and repurpose them for their own defenses.

The bombardier beetle is no exception:

the toads that swallow them

can tolerate the caustic spray
that Darwin found so distasteful.

Most of the beetles
are spit up hours later,

amazingly alive and well.

But how do the toads
survive the experience?

That is still a mystery.

一天好天气,

当查尔斯·达尔文还是
剑桥大学的学生时,

这位初出茅庐的博物学家
从一棵树上撕下一些旧树皮

,在下面发现了两只稀有的甲虫。

当他发现第三只甲虫时,他一只手拿着一只甲虫。

他把其中一只昆虫藏
在嘴里妥善保管,

然后伸手去拿新的标本

——突然喷出的热
苦液体烫伤了他的舌头。

达尔文的攻击者
是庞巴迪甲虫。

它是数千种动物中的一种,

如青蛙、

水母、

蝾螈

和蛇,

它们使用有毒化学物质
来保护自己——

在这种情况下,通过
从腹部腺体喷出有毒液体来保护自己。

但是为什么这种
在 100 摄氏度时喷出的腐蚀性物质不会

伤害甲虫本身呢?

事实上,有毒动物如何
在自己的分泌物中存活下来?

答案是他们
使用两种基本策略中的一种:

安全地储存这些化合物

或发展对它们的抵抗力。

庞巴迪甲虫使用第一种方法。

他们将毒药的成分储存
在两个独立的房间中。

当它们受到威胁时,
腔室之间的阀门会打开

,这些物质会
发生剧烈的化学反应

,将腐蚀性喷雾
从腺体中射出,

穿过一个
保护甲虫内部组织的硬化腔室。

同样,水母将
它们的毒液安全地包装

在称为线虫囊的鱼叉状结构中

毒蛇将它们的
食肉、凝血化合物储存


只有一个出口的特殊隔间中:

通过
毒牙进入猎物或捕食者。

蛇也采用第二种策略:
内在的生化抗性。

响尾蛇和其他类型的毒蛇
制造特殊的蛋白质

,可以结合和灭活
血液中的毒液成分。

与此同时,毒箭蛙也
进化出了对自身毒素的抵抗力,

但通过不同的机制。

这些微小的动物
使用数百种称为生物碱的苦味化合物来保护自己,这些化合物

是通过食用
螨虫和蚂蚁等小型节肢动物而积累起来的。

他们最有效的生物碱之一
是化学地巴替丁,

它与
大脑中的受体结合与尼古丁相同,

但至少强十倍。

只比一粒糖重一点的量
会杀死你。

那么是什么防止毒
蛙中毒呢?

将神经毒性生物碱的分子靶点视为一把锁,

而将生物碱本身视为钥匙。

当有毒钥匙滑入锁中时,

它会引发一连串的化学
和电信号

,可能导致瘫痪、

失去知觉

并最终死亡。

但是如果你改变了锁的形状
,钥匙就放不下了。

对于毒箭蛙和许多其他
具有神经毒性防御的动物来说

,一些基因变化会改变
生物碱结合位点的结构,

足以阻止神经
毒素发挥其不利影响。

有毒和有毒的动物

并不是唯一可以产生
这种抵抗力

的动物:它们的捕食者和猎物也可以。

以具有
神经毒性的蝾螈为食的吊袜带蛇通过与蝾螈本身相同的一些基因变化

,进化出
对蝾螈毒素的抵抗力

这意味着只有毒性最强的
蝾螈才能避免被吃掉——

而且只有抵抗力最强的蛇
才能在这顿饭中幸存下来。

结果是
提供最高抗性和毒性的基因

将大量传递
给下一代。

随着毒性的增加,抵抗力也在增加,

在一场持续数百万年的进化军备竞赛中。

这种模式一遍又一遍地出现。

蚱蜢小鼠通过神经系统的基因变化来抵抗
来自蝎子猎物的痛苦毒液

角蜥很容易
吃收割蚁,

用专门的血浆抵抗它们的毒刺。

海蛞蝓吃水母的刺丝囊,

通过粘液中的化合物阻止它们的活化,

并将它们重新用于自身的防御。

庞巴迪甲虫也不例外:

吞下它们的蟾蜍

可以忍受
达尔文认为令人厌恶的腐蚀性喷雾。

大多数甲虫
会在数小时后吐出,

令人惊讶地活得很好。

但是蟾蜍
是如何在这种经历中幸存下来的呢?

这仍然是一个谜。