How atoms bond George Zaidan and Charles Morton

Most atoms don’t ride solo,

instead they bond with other atoms.

And bonds can form between atoms

of the same element

or atoms of different elements.

You’ve probably imagined bonding as a tug of war.

If one atom is really strong,

it can pull one or more electrons

off another atom.

Then you end up with one negatively charged ion

and one positively charged ion.

And the attraction between these opposite charges

is called an ionic bond.

This is the kind of sharing

where you just give away your toy to someone else

and then never get it back.

Table salt, sodium chloride,

is held together by ionic bonds.

Every atom of sodium gives up one electron

to every atom of chlorine,

ions are formed,

and those ions arrange themselves

in a 3D grid called a lattice,

in which every sodium ion

is bonded to six chloride ions,

and every chloride ion is bonded

to six sodium ions.

The chlorine atoms never give

the sodium atoms their electrons back.

Now, these transactions aren’t always so cut-and-dried.

If one atom doesn’t completely overwhelm the other,

they can actually share each other’s electrons.

This is like a pot luck

where you and a friend each bring a dish

and then both of you share both dishes.

Each atom is attracted to the shared electrons

in between them,

and this attraction is called a covalent bond.

The proteins and DNA in our bodies,

for example,

are held together largely by these covalent bonds.

Some atoms can covalently bond

with just one other atom,

others with many more.

The number of other atoms

one atom can bond with

depends on how its electrons are arranged.

So, how are electrons arranged?

Every atom of a pure, unbonded element

is electrically neutral

because it contains the same number

of protons in the nucleus

as it does electrons around the nucleus.

And not all of those electrons are available for bonding.

Only the outermost electrons,

the ones in orbitals furthest from the nucleus,

the ones with the most energy,

only those participate in bonding.

By the way, this applies to ionic bonding too.

Remember sodium chloride?

Well, the electron that sodium loses

is the one furthest from its nucleus,

and the orbital that electron occupies

when it goes over to chlorine

is also the one furthest from its nucleus.

But back to covalent bonding.

Carbon has four electrons

that are free to bond,

nitrogen has three,

oxygen two.

So, carbon is likely to form four bonds,

nitrogen three,

and oxygen two.

Hydrogen only has one electron,

so it can only form one bond.

In some special cases,

atoms can form more bonds

than you’d expect,

but they better have a really good reason to do so,

or things tend to fly apart.

Groups of atoms

that share electrons covalently with each other

are called molecules.

They can be small.

For example, every molecule of oxygen gas

is made up of just two oxygen atoms

bonded to each other.

Or they could be really, really big.

Human chromosome 13 is just two molecules,

but each one has over 37 billion atoms.

And this neighborhood,

this city of atoms,

is held together by the humble chemical bond.

大多数原子不会单独骑行,

而是与其他原子结合。

并且可以

在相同元素的

原子或不同元素的原子之间形成键。

你可能已经把结合想象成一场拔河比赛。

如果一个原子真的很强,

它可以从另一个原子上拉出一个或多个电子

然后你最终得到一个带负电的离子

和一个带正电的离子。

这些相反电荷之间的吸引力

称为离子键。

这是一种分享

,你只是把你的玩具送给别人

,然后就再也拿不回来了。

食盐氯化钠

通过离子键结合在一起。

每个钠原子

向每个氯原子放弃一个电子,

形成离子

,这些离子排列

在称为晶格的 3D 网格中

,其中每个钠

离子与六个氯离子键合

,每个氯离子与六个氯离子键

合 六个钠离子。

氯原子永远不会

给钠原子他们的电子。

现在,这些交易并不总是那么简单。

如果一个原子没有完全压倒另一个原子,

它们实际上可以共享彼此的电子。

这就像

你和朋友每人带来一道菜

,然后你们俩分享两道菜。

每个原子都被它们之间的共享电子吸引

,这种吸引称为共价键。 例如,

我们体内的蛋白质和 DNA

主要是通过这些共价键结合在一起的。

一些原子可以

仅与一个其他原子共价键合,而

另一些原子可以与更多原子共价键合。 一个原子可以结合

的其他原子的数量

取决于其电子的排列方式。

那么,电子是如何排列的呢?

纯的未键合元素的每个原子

都是电中性的,

因为它

在原子核中包含的质子数量

与它在原子核周围的电子数量相同。

并非所有这些电子都可用于键合。

只有最外层的电子

,离核最远的轨道上的电子,

能量最大的电子,

只有那些参与键合的电子。

顺便说一句,这也适用于离子键合。

还记得氯化钠吗?

好吧,钠失去的电子

是离它的原子核最远的一个

电子,

当它进入氯

时,电子占据的轨道也是离它的原子核最远的一个。

但回到共价键。

碳有四个

可以自由键合的电子,

氮有三个,

氧有两个。

因此,碳很可能形成四个键,氮键三键

,氧键二。

氢只有一个电子,

所以只能形成一个键。

在某些特殊情况下,

原子可以形成

比您预期的更多的键,

但它们最好有一个非常好的理由这样做,

否则事情往往会分崩离析。

彼此共价共享电子的原子团

称为分子。

它们可以很小。

例如,每个氧气分子

仅由两个

相互键合的氧原子组成。

或者它们可能非常非常大。

人类第 13 号染色体只有两个分子,

但每个分子都有超过 370 亿个原子。

而这个社区,

这个原子之城,

是由不起眼的化学键结合在一起的。