The uncertain location of electrons George Zaidan and Charles Morton

You probably know that all stuff
is made up of atoms

and that an atom

is a really, really, really,
really tiny particle.

Every atom has a core,

which is made up of at least one

positively charged particle

called a proton,

and in most cases,

some number of neutral
particles called neutrons.

That core is surrounded

by negatively charged
particles called electrons.

The identity of an atom is determined

only by the number
of protons in its nucleus.

Hydrogen is hydrogen because it
has just one proton,

carbon is carbon because it has six,

gold is gold because it has 79,

and so on.

Indulge me in a momentary tangent.

How do we know about atomic structure?

We can’t see protons,
neutrons, or electrons.

So, we do a bunch of experiments

and develop a model
for what we think is there.

Then we do some more experiments

and see if they agree with the model.

If they do, great.

If they don’t, it might
be time for a new model.

We’ve had lots of very
different models for atoms

since Democritus in 400 BC,

and there will almost certainly

be many more to come.

Okay, tangent over.

The cores of atoms tend to stick together,

but electrons are free to move,

and this is why chemists love electrons.

If we could marry them,

we probably would.

But electrons are weird.

They appear to behave either as particles,

like little baseballs,

or as waves, like water waves,

depending on the experiment
that we perform.

One of the weirdest things about electrons

is that we can’t exactly
say where they are.

It’s not that we don’t have the equipment,

it’s that this uncertainty

is part of our model of the electron.

So, we can’t pinpoint them, fine.

But we can say
there’s a certain probability

of finding an electron in a given space

around the nucleus.

And that means that we can
ask the following question:

If we drew a shape around the nucleus

such that we would be 95% sure

of finding a given electron
within that shape,

what would it look like?

Here are a few of these shapes.

Chemists call them orbitals,

and what each one looks like

depends on, among other things,

how much energy it has.

The more energy an orbital has,

the farther most of its density is

from the nucleus.

By they way, why did we pick 95%

and not 100%?

Well, that’s another quirk

of our model of the electron.

Past a certain distance from the nucleus,

the probability of finding an electron

starts to decrease

more or less exponentially,

which means that while it
will approach zero,

it’ll never actually hit zero.

So, in every atom,

there is some small,
but non-zero, probability

that for a very, very
short period of time,

one of its electrons

is at the other end of the known universe.

But mostly electrons stay
close to their nucleus

as clouds of negative charged density

that shift and move with time.

How electrons from one atom

interact with electrons from another

determines almost everything.

Atoms can give up their electrons,

surrendering them to other atoms,

or they can share electrons.

And the dynamics of this social network

are what make chemistry interesting.

From plain old rocks

to the beautiful complexity of life,

the nature of everything we see,

hear,

smell, taste, touch, and even feel

is determined at the atomic level.

你可能知道所有的东西
都是由原子组成的

,原子

是一个非常、非常、非常、
非常小的粒子。

每个原子都有一个核心,

它由至少一个

带正电的粒子(

称为质子)组成

,在大多数情况下,由

一些
称为中子的中性粒子组成。

该核心被

称为电子的带负电粒子包围。

原子的身份仅取决于

其原子核中的质子数。

氢是氢,因为它
只有一个质子,

碳是碳,因为它有六个,

金是金,因为它有 79,

依此类推。

让我沉迷于一时的切线。

我们如何知道原子结构?

我们看不到质子、
中子或电子。

所以,我们做了一堆实验,


为我们认为存在的东西开发了一个模型。

然后我们再做一些实验

,看看他们是否同意这个模型。

如果他们这样做,那就太好了。

如果他们不这样做,可能
是时候换一个新模型了。 自公元前 400 年德谟克利特以来

,我们已经有许多非常
不同的原子模型

而且几乎肯定

还会有更多。

好了,扯远了。

原子的核心倾向于粘在一起,

但电子可以自由移动

,这就是化学家喜欢电子的原因。

如果我们可以嫁给他们,

我们可能会。

但是电子很奇怪。 根据我们进行的实验,

它们看起来要么像粒子,

像小棒球,

要么像波浪,像水波

关于电子最奇怪的事情之一

是我们不能
准确地说出它们在哪里。

并不是我们没有设备,

而是这种不确定性

是我们电子模型的一部分。

所以,我们无法确定它们,好吧。

但是我们可以说
在原子核周围的

给定空间中找到电子的概率是一定

的。

这意味着我们可以
提出以下问题:

如果我们在原子核周围画一个形状,

这样我们就有 95% 的把握在该形状

内找到给定的电子

它会是什么样子?

以下是其中一些形状。

化学家称它们为轨道

,每个轨道的外观

取决于

它有多少能量。

轨道的能量

越多,它的大部分密度

离原子核就越远。

顺便说一句,为什么我们选择 95%

而不是 100%?

嗯,这

是我们的电子模型的另一个怪癖。

离原子核超过一定距离后

,发现电子的概率

开始

或多或少呈指数下降,

这意味着虽然它
会接近零,

但它永远不会真正达到零。

因此,在每个原子中,

都有一些很小
但非零的概率

,即在非常非常
短的时间内,它的

一个电子

位于已知宇宙的另一端。

但大多数电子都
靠近它们的原子核,

因为带负电荷的密度云

会随着时间的推移而变化和移动。

一个原子的电子如何与另一个原子的

电子相互作用

几乎决定了一切。

原子可以放弃它们的电子,

将它们交给其他原子,

或者它们可以共享电子。

这个社交网络的动态

使化学变得有趣。

从朴素的古老岩石

到生命的美丽复杂

性,我们看到、

听到、

闻到、尝到、触摸到甚至感觉到的一切事物的本质都是

在原子水平上决定的。