What is the shape of a molecule George Zaidan and Charles Morton

What is the shape of a molecule?

Well, a molecule is mostly empty space.

Almost all of its mass is concentrated

in the extremely dense nuclei of its atoms.

And its electrons,

which determine how the atoms

are bonded to each other,

are more like clouds of negative charge

than individual, discrete particles.

So, a molecule doesn’t have a shape

in the same way that, for example,

a statue has a shape.

But for every molecule,

there’s at least one way

to arrange the nuclei and electrons

so as to maximize the attraction

of opposite charges

and minimize the repulsion

of like charges.

Now, let’s assume that the only electrons

that matter to a molecule’s shape

are the outermost ones from each participating atom.

And let’s also assume

that the electron clouds in between atoms,

in other words, a molecule’s bonds,

are shaped kind of like sausages.

Remember that nuclei are positively charged

and electrons are negatively charged,

and if all of a molecule’s nuclei

were bunched up together

or all of its electrons were bunched up together,

they would just repel each other and fly apart,

and that doesn’t help anyone.

In 1776, Alessandro Volta,

decades before he would eventually invent batteries,

discovered methane.

Now, the chemical formula of methane is CH4.

And this formula tells us

that every molecule of methane

is made up of one carbon and four hydrogen atoms,

but it doesn’t tell us what’s bonded to what

or how they atoms are arranged in 3D space.

From their electron configurations,

we know that carbon can bond

with up to four other atoms

and that each hydrogen can only bond

with one other atom.

So, we can guess

that the carbon should be the central atom

bonded to all the hydrogens.

Now, each bond represents

the sharing of two electrons

and we draw each shared pair of electrons as a line.

So, now we have a flat representation

of this molecule,

but how would it look in three dimensions?

We can reasonably say

that because each of these bonds

is a region of negative electric charge

and like charges repel each other,

the most favorable configuration of atoms

would maximize the distance between bonds.

And to get all the bonds

as far away from each other as possible,

the optimal shape is this.

This is called a tetrahedron.

Now, depending on the different atoms involved,

you can actually get lots of different shapes.

Ammonia, or NH3, is shaped like a pyramid.

Carbon dioxide, or CO2, is a straight line.

Water, H2O, is bent like your elbow would be bent.

And chlorine trifluoride, or ClF3,

is shaped like the letter T.

Remember that what we’ve been doing here

is expanding on our model of atoms and electrons

to build up to 3D shapes.

We’d have to do experiments

to figure out if these molecules

actually do have the shapes we predict.

Spoiler alert:

most of the do, but some of them don’t.

Now, shapes get more complicated

as you increase the number of atoms.

All the examples we just talked about

had one obviously central atom,

but most molecules,

from relatively small pharmaceuticals

all the way up to long polymers

like DNA or proteins, don’t.

The key thing to remember

is that bonded atoms will arrange themselves

to maximize the attraction between opposite charges

and minimize the repulsion between like charges.

Some molecules even have two or more

stable arrangements of atoms,

and we can actually get really cool chemistry

from the switches between those configurations,

even when the composition of that molecule,

that’s to say the number and identity of its atoms,

has not changed at all.

分子的形状是什么?

嗯,一个分子大部分是空的。

它几乎所有的质量都集中

在其原子的极其致密的原子核中。

它的

电子决定了原子

如何相互结合

,更像是负电荷云,而

不是单个离散粒子。

因此,分子没有形状

就像雕像有形状一样。

但是对于每个分子,

至少有一种方法

可以排列原子核和电子

,从而最大限度地

吸引异性电荷,

并最大限度地减少

同种电荷的排斥。

现在,让我们假设唯一

对分子形状重要

的电子是每个参与原子的最外层电子。

我们还假设

原子之间的电子云

,换句话说,分子的键

,形状有点像香肠。

请记住,原子核带正电

,电子带负电

,如果一个分子的所有

原子核聚在一起

或所有电子聚在一起,

它们只会相互排斥并飞散

,这对任何人都没有帮助 .

1776 年,亚历山德罗·沃尔塔(Alessandro Volta)

在他最终发明电池的几十年前

发现了甲烷。

现在,甲烷的化学式是CH4。

这个公式告诉我们

,每一个甲烷分子

都是由一个碳原子和四个氢原子组成的,

但它并没有告诉我们

在 3D 空间中原子是如何与什么结合的,或者它们是如何排列的。

从它们的电子配置中,

我们知道碳最多可以

与四个其他原子键合

,而每个氢只能

与一个其他原子键合。

因此,我们可以

猜测碳应该是

与所有氢键合的中心原子。

现在,每个键代表

两个电子的共享

,我们将每个共享的电子对画成一条线。

所以,现在我们有了

这个分子的平面表示,

但是它在三个维度上会是什么样子呢?

我们可以合理地说

,因为这些键

中的每一个都是负电荷区域,

并且同种电荷相互排斥,

所以最有利的原子构型

将使键之间的距离最大化。

为了使所有的键

尽可能远离彼此

,最佳形状是这样的。

这被称为四面体。

现在,根据所涉及的不同原子,

您实际上可以获得许多不同的形状。

氨或 NH3 的形状像金字塔。

二氧化碳或二氧化碳是一条直线。

水,H2O,就像你的肘部弯曲一样弯曲。

三氟化氯或 ClF3

的形状像字母 T。

请记住,我们在这里所做的

是扩展我们的原子和电子模型

以构建 3D 形状。

我们必须做实验

来确定这些分子

是否真的具有我们预测的形状。

剧透警告:

大多数都可以,但有些不会。

现在,

随着原子数量的增加,形状变得更加复杂。

我们刚才谈到的所有例子

都有一个明显的中心原子,

但大多数分子,

从相对较小的药物

一直到

像 DNA 或蛋白质这样的长聚合物,都没有。

要记住的关键

是,键合原子会自行排列

以最大化相反电荷之间的吸引力

并最小化相似电荷之间的排斥。

有些分子甚至有两个或更多

稳定的原子排列

,我们实际上可以

从这些排列之间的转换中获得非常酷的化学反应,

即使那个分子的组成,

也就是说它的原子的数量和特性,

在 全部。