Birth and Rebirth From Stellar Dust to Supermassive Blackholes

Transcriber: Judy YS
Reviewer: Amanda Zhu

OK, thank you very much, everyone,
for being here with us.

And thank you very much for the MCs
for such a wonderful introduction.

So our journey today starts here, OK?

This is the Nobel Prize of 2020
that was awarded

for the discovery and for understanding

of the black holes.

So what are black holes?

So half of the Nobel Prize was given
to the understanding of black holes.

And gravity,

you can understand that
as curvature of spacetime.

Here, you can see the Earth,
curving spacetime around it.

And we have another mass -
let’s say the moon -

it naturally follows the curvature
that the Earth produces.

And that’s what we call gravity.

But now imagine we take a lot of mass,
and we condense it into a single point.

What happens then?

It pretty much punctures spacetime.

And that’s what we understand
to be a black hole.

Now, the other half of the equation,

the other half of the Nobel Prize
was given for the actual discovery,

for the black hole
at the center of our galaxy.

So here we can see actually
how this discovery was done.

Here you can see, over time,

we’re tracing stars
right at the center of our Milky Way.

And we can see all the objects
moving around something,

something very massive.

But there’s no light
coming from that rare area.

And if we think about it,

we calculate how much mass
should have been there,

then we arrive at this astonishing number
of million times heavier than our own sun.

Yet it doesn’t emit light.

And that’s our first evidence
for the existence of a black hole.

Now, recently, you may have seen
this picture in the news.

This was the first picture
taken of a black hole.

Now, it may sound strange, right?

This is a black hole.

How can you take a picture
of a black hole.

Well, we didn’t, in fact, actually
take a picture of the black hole,

but instead, we actually took a picture
of the shadow of a black hole.

So here, you can see an animation
which shows this concept.

You can see the light rays going around

and starting to bend
from behind a black hole.

And all the light that then, you know,
is bended towards our way,

we can see it,

but of course, at the actual black hole,

it’s black.

We can’t see anything.

And so that’s how we end up
arriving with an image like this,

where you can see the ring
and something black in the middle.

So black holes are something that we have
fair confidence in its existence.

And, you know, these are mystical things
that kind of captured our imagination

ever since Einstein theoretically
came up with the concept

that a black hole must exist.

But how are they formed?

How can we form a black hole

that is more than a million times
heavier than our own sun?

And what I want to do today
is actually guide you through the process

and show you some
of our current understanding

in terms of simulations, right,

just our understanding of what happens.

But I’m going to do
something extra as well.

I’m going to also give you an audio tour
of how this happens,

and I’ll explain how this works.

OK, now let’s start at the very beginning,

where we have dense dust
everywhere in the universe.

And, you know,

through the process of gravity,

it attracts more and it attracts more,

and you get a bigger
and bigger cluster of dust.

And at some point,
this creates so much pressure

and adds so much more mass to it

that the star turns on
and starts emitting light.

And that’s how we create a star.

And the star then continues
to burn up its fuel, right,

its hydrogen, its helium and so on,

until at some point
it burns up all its fuel,

it can no longer sustain itself,
and it goes what we call supernova.

It explodes.

It sheds away its shell.

And then leaves behind something
that is only a remnant,

only a tiny fraction of its mass.

Now, it can either, depending on the size,

leave behind what we know
to be a neutron star,

which is just a big object,
about 10 kilometers,

but which has the mass
of an entire sun condensed into it,

which is almost like a single atom.

Or if the star’s even heavier,

it could even collapse
into what we know a black hole.

And the result of this process
gives us a black hole

that’s about several times
the mass of the sun.

But again, you know, we’re still not there
at the millions of times of the sun.

Now, this process of a supernova
has actually been observed,

and this is actually an animation
where you can kind of zoom in,

you can pan in,

on one of the brightest events
that happened in our night sky,

which was a supernova in 1987.

And what we can see nowadays,
if we point a telescope to it,

is it’s remnant.

We call it a nebula, right?

So its mass that it’s shed
in this big explosion,

is what we can actually observe now.

And this actually makes
for the beautiful imagery.

But still, we want to go
to the millions of solar masses.

How do we get there?

Now, to understand this process better,

we actually need to turn
to another Nobel Prize,

which was given in 2017.

And these three gentlemen got it
for the discovery of gravitational waves.

And let me explain to you
what gravitational waves are.

So gravitational waves

are distortions in spacetime
that travel at the speed of light.

And a distortion of spacetime
is actually just the changing of length.

It’s a compression of spacetime.

And you can see a vastly
exaggerated image here,

where you can see the Earth

being completely distorted
by a gravitational wave.

Now, these actual distortions
are very very small,

and they actually need to be picked up

by kilometer-size instruments
that we’ve built.

And this is an example
in the US called LIGO,

where there’s a three-kilometer,
sorry, four-kilometer machine

that we need to pick up
these tiny ripples in spacetime.

And the way this happens

is that there’s actually
a laser being shot -

There’s a laser being shot at a mirror,
and it bounces back,

and then the whole system,
you know, is locked in.

But when there’s a gravitational
wave compressing space,

you can see a flickering of this laser,
of the laser output.

And that gives us the image
of a black hole.

But better yet,

I should actually call it sounds.

These ripples actually caused
the disturbance in the laser,

which we can turn into sound.

And that’s something
that I wanted to do today with you.

So I don’t only want to show you
the process of what happens

when we form black holes,

but I also want to give you
the audio sense

of what it sounds like
for black holes to be born.

So this is the first example.

I talked about a supernova
producing neutron stars and black holes.

Now, first what I’m going to show you

is a simulation of
how an explosion actually occurs

And you can kind of see this rumbling,

this kind of, you know, mess going on,

and then at some point, you know,

it starts to wiggle
and then it will free itself.

Now, let me play the sound

the gravitational wave
associated with this.

(Low rumbling)

You can hear a vague rumbling.

It’s kind of gradual;
it’s almost like noise.

Now even in this process

we can actually look at the formation
of what happens inside,

in that process in the star.

And so this is a different example
where, in this case,

I’m showing the creation
of a compact object-based transition.

And you can kind of see it.

Suddenly, there’s this change, big change,

and there’s a shock wave being sent out,
and then the rest of the star explodes.

And again, let me show you

what it sounds like
in gravitational waves.

(Low rumbling)

(Pitch increases suddenly)

So you could hear the same rumble
that started in the beginning,

but suddenly this big “pop”
and then it fade off.

And this is, for example,

a way that we can figure out
what was produced in this explosion.

Was it a neutron star?

Or was it a black hole?

Now, upon creation, we can still continue
to listen to the sound.

So first, what I’m going to show you
is how does a neutron star sound?

Neutron stars have
their own characteristic sounds.

And so first, again,

I’m going to show you
the oscillation of a neutron star.

And you can kind of see
this neutron star rotating around,

and you can see the mass
being thrown around.

Now, again, the sound of a neutron star.

(Low rumbling with discernible beats)

OK, you can hear
this continuous kind of pitch,

but then it slowly fades over time.

And a neutron star is stable,
so you can hear this continuous sound.

Now, what about a black hole?

Black holes are very very stiff.

They are the most extreme objects
that we have in the universe.

How does that sound?

(A short blip)

So what you hear is a very faint blip.

It’s just a blip - blip! - and it’s gone.

It’s pretty much, you know, a single blip.

And then because
the black hole is so stiff,

all the sound,

all the gravitational waves
immediately damped.

OK, now to the central question again,

we know how to create black holes that are
several times the mass of the sun.

And we’ve seen black holes

that are a million times
heavier than the sun.

But how do we get
from one place to the other?

And that’s actually
what we call, you know,

a process where we want to see

if we can find the so-called
intermediate-mass black holes,

the black holes that are in between
several times the mass of the sun

and millions times heavier than the sun.

Now, we don’t necessarily know
how this process happens,

but we did get clues.

We did get clues.

Now, the first clue
comes from the actual discovery,

the first discovery
of gravitational waves.

And what we saw there was
what we call a collision of black holes.

Here, so you can indeed see
two black holes orbiting each other,

and this process emits gravitational waves
so that the objects get closer and closer,

radiates ever more gravitational waves
until at some point,

it collides and forms a single black hole.

Beautiful process.

So, this is actually an image
that you would have seen

if you were able to get close enough

and see the background stars behind it.

Now, black holes are too far away,

and especially too far away
for us to see a process like this happen.

But it doesn’t mean
that we can’t understand this process.

And in fact, what I want to now show you

was the first sound recorded
from exactly this process -

the collision of two black holes.

Ok. Take a listen.

(Low rumbling)

(High-pitch rumbling
with intervening chirps)

(Low rumbling)

(High-pitch rumbling
with intervening chirps)

So what we just heard was, first time,
you heard it in normal speed.

And you know, if you’ve got good ears
you would hear a thin blip.

And the second time,
we kind of increased the frequency,

so you can actually hear it
and you can hear this beautiful chirp,

the amplitude and the frequency -
loudness and the pitch - going up

as the two objects get closer
and collide to form a single black hole.

So now we have a process
where we take two lighter black holes

and form a heavier black hole.

This is a first way to making
ever more heavy black holes.

Now, to highlight the process

of how we understand
how massive the black holes were.

I’m going to play you now the same sound

but from two different collisions,

one heavier and one lighter.

And I want to show you how that sounds.

(Low rumbling glides to a higher pitch
and stops abruptly)

(Similar audio)

(Similar audio)

(Similar audio)

So, especially if you’re musically trained

and you’re able to hear
the difference in pitches

and also how the pitch evolved,
how it ramps up,

that’s how we scientists can understand
how heavy were the black holes

and what end product did they make
after their collision.

Now, that by itself is great.

We now have a firm grasp

of how we can make
out of lighter black holes

somewhat heavier black holes.

And our way towards the intermediate-mass
black hole actually came in 2019,

when we saw a merger.

Again, this is something
that I just showed you before -

there is just two black holes
orbiting each other, colliding,

forming a heavier black hole.

Now, that by itself
isn’t very special anymore in 2019,

but what was special
is the mass that this collision had.

And the mass, indeed, here,

was that that fell into
this intermediate-mass black hole region.

Now, to give you the sound.

I want to play to you the sound.

(A short, low sound)

Now, what you heard, again,
is just a faint blip.

It’s a very short blip.

I would always call it a bark
rather than a chirp.

And just because of that shortness
and that burst of energy,

that burst of sound,

we can infer that this black hole
was actually something

that was in this so-called
intermediate-mass black hole region.

Here we can see all the black holes
that LIGO has found over the years,

and you can see, highlighted,
the one that I just talked about,

the one that pushed us over this region

where we’re no longer talking
about stellar mass black holes.

But now we’re talking
about intermediate-mass blackholes

So indeed, we’re actually going towards
finding yet ever heavier black holes

and on our way to discover

how we can go from light black holes
that come from the process of supernovae

all the way to seeing black holes

that are of the size or the mass
that we found in the center of our galaxy.

So indeed, we now are, you know,
with these modern tools,

with these modern scientific tools,

we’re now getting
towards mapping out the process

of the birth and rebirth of black holes

that have such a fundamental importance
in our whole evolution

and everything we see around us.

Thank you.

抄写员:Judy YS
审稿人:Amanda Zhu

好的,非常
感谢大家与我们在一起。

非常感谢 MC
提供如此精彩的介绍。

所以我们今天的旅程从这里开始,好吗?

这是 2020 年的诺贝尔奖

因发现和

理解黑洞而颁发。

那么什么是黑洞?

因此,诺贝尔奖的一半被赋予
了对黑洞的理解。

而引力,

你可以理解
为时空的曲率。

在这里,你可以看到地球,
围绕它弯曲时空。

我们还有另一个质量——
比如说月球——

它自然地
遵循地球产生的曲率。

这就是我们所说的重力。

但现在想象一下,我们取了很多质量,
然后我们把它浓缩成一个点。

那会发生什么?

它几乎刺穿了时空。

这就是我们所
理解的黑洞。

现在,等式

的另一半,诺贝尔奖的另一半,
是为了

我们银河系中心的黑洞的实际发现。

所以在这里我们可以
看到这个发现是如何完成的。

在这里你可以看到,随着时间的推移,

我们正在追踪
银河系中心的恒星。

我们可以看到所有物体
在某物周围移动,

某物非常巨大。

但是没有
来自那个稀有区域的光。

如果我们想一想,

我们会计算出
那里应该有多少质量,

然后我们就会得出这个
比我们自己的太阳重数百万倍的惊人数字。

然而它不发光。

这是我们第
一个证明黑洞存在的证据。

现在,最近,您可能已经
在新闻中看到了这张照片。

这是拍摄的第一张
黑洞照片。

现在,听起来可能很奇怪,对吧?

这是一个黑洞。

你怎么能拍到
黑洞的照片。

好吧,事实上,我们并没有实际
拍摄黑洞的照片,

而是我们实际
拍摄了黑洞阴影的照片。

所以在这里,你可以看到一个
展示这个概念的动画。

你可以看到光线从黑洞后面四处传播

并开始弯曲

然后所有的光,你知道的,
向我们的方向弯曲,

我们可以看到它,

但当然,在实际的黑洞中,

它是黑色的。

我们什么都看不到。

这就是我们
最终得到这样一个图像的方式

,你可以在其中看到戒指
和中间的黑色东西。

所以黑洞是我们
对它的存在相当有信心的东西。

而且,你知道,自从爱因斯坦在理论上提出黑洞必须存在的概念以来,这些神秘的事物
就吸引了我们的想象力

但它们是如何形成的?

我们如何才能形成一个

比我们自己的太阳重一百万倍以上的黑洞?

而我今天想做
的实际上是指导你完成这个过程

,向你展示
我们目前

对模拟的一些理解,对,

只是我们对发生的事情的理解。

但我
也会做一些额外的事情。

我还将为您提供
有关此过程的音频导览,

并解释其工作原理。

好的,现在让我们从一开始就开始,宇宙

中到处都是密集的尘埃

而且,你知道,

通过重力的过程,

它会吸引更多的东西,它会吸引更多的东西

,你会得到
越来越大的尘埃簇。

在某些时候,
这会产生如此大的压力

并为其增加如此多的质量,

以至于恒星会打开
并开始发光。

这就是我们创造星星的方式。

然后恒星
继续燃烧它的燃料,对,

它的氢,它的氦等等,

直到在某个时候
它燃烧掉所有的燃料,

它不再能够维持自己
,它变成了我们所说的超新星。

它爆炸了。

它脱落了它的外壳。

然后留下
一些只是残余的东西,

只是其质量的一小部分。

现在,根据大小,它可以

留下我们所
知道的中子星,

它只是一个大物体,
大约 10 公里,

但它的
质量凝聚了整个太阳,

这几乎就像 单个原子。

或者,如果这颗恒星更重,

它甚至可能坍缩
成我们所知的黑洞。

这个过程的结果
给了我们一个

质量大约是太阳几倍的黑洞。

但是,你知道,我们仍然不在
太阳的数百万倍。

现在,实际上已经观察到了超新星的这个过程

,这实际上是一个动画
,你可以放大,

你可以平移,

在我们夜空中发生的最明亮的事件之一

这是 1987 年的超新星 .

而我们现在可以看到,
如果我们用望远镜对准它

,它是残余物。

我们称它为星云,对吧?

所以它
在这次大爆炸中脱落的质量,

是我们现在可以实际观察到的。

这实际上构成
了美丽的图像。

但是,我们仍然
想去数百万个太阳质量。

我们怎么去那里?

现在,为了更好地理解这个过程,

我们实际上需要求助于

2017 年颁发的另一个诺贝尔奖。

这三位先生
因为发现了引力波而获得了它。

让我向你解释一下
什么是引力波。

所以引力波是以光速传播

的时空扭曲

而时空的扭曲
实际上只是长度的变化。

这是时空的压缩。

你可以在这里看到一个非常
夸张的图像

,你可以看到地球

被引力波完全扭曲了。

现在,这些实际失真
非常非常小

,实际上需要我们制造

的千米级仪器
来接收它们。


是美国的一个例子,叫做 LIGO,

那里有一台 3 公里,
抱歉,4 公里的机器

,我们需要它来拾取
时空中的这些微小涟漪。

发生这种情况的方式

是,实际上
有一个激光被射出——

有一个激光被射向一面镜子
,它反弹回来,

然后整个系统,
你知道,被锁定。

但是当有一个引力
波压缩空间时,

你可以看到这个激光的闪烁
,激光输出。

这给了我们
一个黑洞的图像。

但更好的是,

我实际上应该称之为声音。

这些涟漪实际上
引起了激光的扰动

,我们可以把它变成声音。


就是我今天想和你一起做的事情。

所以我不仅想向你展示

我们形成黑洞时发生的过程,

而且我还想给你

听听黑洞诞生的声音。

这是第一个例子。

我谈到了
产生中子星和黑洞的超新星。

现在,首先我要向你展示的


一个爆炸实际

发生的模拟 你可以看到这种隆隆声,

这种,你知道,乱七八糟的事情,

然后在某个时候,你知道,

它 开始摆动
,然后它会自行释放。

现在,让我播放

与此相关的引力波声音。

(低沉的隆隆声)

你能听到模糊的隆隆声。

这是一种渐进的;
这几乎就像噪音。

现在,即使在这个过程中,

我们实际上也可以看到在恒星
内部发生了什么,

在那个过程中。

所以这是一个不同的
例子,在这个例子中,

我展示了
一个基于对象的紧凑转换的创建。

你可以看到它。

突然,发生了这种变化,巨大的变化

,发出了冲击波,
然后剩下的恒星爆炸了。

再一次,让我向你

展示它
在引力波中的声音。

(低隆隆声)

(音调突然增加)

所以你可以听到开始时同样的隆隆声

但突然间是这种大的“砰砰”声
,然后它就消失了。

例如,这

是一种我们可以
弄清楚这次爆炸产生了什么的方法。

是中子星吗?

或者它是一个黑洞?

现在,在创建之后,我们仍然可以
继续聆听声音。

首先,我要向你们展示的
是中子星的声音是怎样的?

中子星有
自己独特的声音。

所以首先,

我要再次向你展示
中子星的振荡。

你可以看到
这颗中子星在旋转

,你可以看到被抛来抛去的质量

现在,又是中子星的声音。

(带有明显节拍的低隆隆声)

好的,你可以听到
这种连续的音调,

但随着时间的推移它会慢慢消失。

而中子星是稳定的,
所以你可以听到这种连续的声音。

现在,黑洞呢?

黑洞非常非常坚硬。

它们
是我们在宇宙中拥有的最极端的物体。

听上去怎么样?

(短暂的昙花一现)

所以你听到的是一个非常微弱的昙花一现。

这只是昙花一现——昙花一现! - 它消失了。

你知道,这几乎是一个昙花一现。

然后
因为黑洞是如此的僵硬,

所有的声音,

所有的引力波都
立即衰减了。

好的,现在再次回到中心问题,

我们知道如何制造
几倍于太阳质量的黑洞。

我们已经看到

了比太阳重一百万倍的黑洞

但是我们如何
从一个地方到达另一个地方呢?

这实际上
就是我们所说的,你知道的,

一个我们想

看看我们是否能找到所谓的
中等质量黑洞的过程,

这些黑洞
的质量介于太阳质量的几倍和太阳质量的

几百万倍之间。 太阳。

现在,我们不一定
知道这个过程是如何发生的,

但我们确实得到了线索。

我们确实得到了线索。

现在,第一个线索
来自实际的发现,引力波

的第一个发现

我们在那里看到的是
我们所说的黑洞碰撞。

在这里,你确实可以看到
两个黑洞相互绕行

,这个过程会发出引力波
,使物体越来越近,

辐射出越来越多的引力波,
直到某个点,

它碰撞并形成一个黑洞。

美丽的过程。

所以,这实际上是一个图像

如果你能够足够近

地看到它背后的背景星星,你就会看到它。

现在,黑洞离我们太远了

,尤其是太远了
,我们无法看到这样的过程发生。

但这并不
意味着我们无法理解这个过程。

事实上,我现在想向你们展示的

正是这个过程记录的第一个声音
——

两个黑洞的碰撞。

行。 听一听。

(低隆隆声)

(高音隆隆声
,中间有啁啾声)

(低声响)

(高音调隆隆声
,中间有啁啾声)

所以我们刚刚听到的是,第一次,
你以正常速度听到它。

而且你知道,如果你的耳朵很好,
你会听到轻微的声音。

第二次,
我们增加了频率,

所以你可以真正听到它
,你可以听到美妙的啁啾声

,幅度和频率——
响度和音高——

随着两个物体靠近
并碰撞而上升,形成一个 单个黑洞。

所以现在我们有了一个过程
,我们取两个较轻的黑洞

并形成一个较重的黑洞。

这是制造
越来越重的黑洞的第一种方法。

现在,强调

我们如何理解
黑洞质量的过程。

我现在要为你播放相同的声音,

但来自两种不同的碰撞,

一种更重,一种更轻。

我想告诉你这听起来如何。

(低隆隆声滑到更高的音调
并突然停止)

(类似的音频)

(类似的音频)

(类似的音频)

所以,特别是如果你受过音乐训练

并且你能够听到
音高的差异

以及音高是如何演变的 ,
它是如何上升的,

这就是我们科学家可以
了解黑洞的重量

以及
它们在碰撞后产生的最终产物的方式。

现在,这本身就很棒。

我们现在已经牢牢掌握

了如何
从较轻的黑洞中制造出

一些较重的黑洞。

我们通往中等质量
黑洞的道路实际上是在 2019 年,

当时我们看到了合并。

同样,这
是我之前刚刚向您展示过的东西 -

只有两个黑洞
相互环绕,碰撞,

形成一个更重的黑洞。

现在,这本身
在 2019 年已经不再特别,

但特别的
是这次碰撞的质量。

实际上,这里的质量

就是落入
这个中等质量黑洞区域的质量。

现在,给你声音。

我想给你播放声音。

(一声短促的低沉声音)

现在,你再次听到的
只是一个微弱的信号。

这是一个非常短暂的昙花一现。

我总是称它为树皮
而不是唧唧喳喳。

而仅仅因为那个短暂
,那个能量的

爆发,那个声音的爆发,

我们就可以推断出这个
黑洞实际上

是在这个所谓的
中等质量黑洞区域内的东西。

在这里,我们可以
看到 LIGO 多年来发现的所有黑洞

,你可以看到,突出显示
,我刚才谈到

的那个,它把我们推到这个

我们不再
谈论恒星质量黑色的区域 孔。

但现在我们谈论的
是中等质量黑洞

所以事实上,我们实际上正在
寻找更重的黑洞,

并且正在探索

如何
从超新星过程中产生的轻黑洞中走出来

看到我们在银河系中心发现的大小或质量的黑洞。

所以事实上,我们现在,你知道,
有了这些现代工具,

有了这些现代科学工具,

我们现在
正在绘制出

黑洞的诞生和重生的过程,这些过程

在我们的整个进化过程中具有如此重要的意义。

我们在我们周围看到的一切。

谢谢你。