How bones make blood Melody Smith

At any given moment, trillions of cells
are traveling through your blood vessels,

sometimes circling the body
in just one minute.

Each of these cells
has its origins deep in your bones.

Bones might seem rock-solid,
but they’re actually quite porous inside.

Large and small blood vessels
enter through these holes.

And inside most of the large bones
of your skeleton is a hollow core

filled with soft bone marrow.

Marrow contains fat
and other supportive tissue,

but its most essential elements
are blood stem cells.

These stem cells are constantly dividing.

They can differentiate
into red blood cells,

white blood cells, and platelets,

and send about hundreds of billions
of new blood cells

into circulation every day.

These new cells enter the bloodstream

through holes
in small capillaries in the marrow.

Through the capillaries,

they reach larger blood vessels
and exit the bone.

If there’s a problem with your blood,

there’s a good chance
it can be traced back to the bone marrow.

Blood cancers often begin
with genetic mutations in the stem cells.

The stem cells themselves
are not cancerous,

but these mutations can interfere
with the process of differentiation

and result in malignant blood cells.

So for patients with advanced
blood cancers like leukemia and lymphoma,

the best chance for a cure is often
an allogeneic bone marrow transplant,

which replaces the patient’s bone marrow
with a donor’s.

Here’s how it works.

First, blood stem cells
are extracted from the donor.

Most commonly,

blood stem cells are filtered out
of the donor’s bloodstream

by circulating the blood
through a machine

that separates it
into different components.

In other cases,
the marrow is extracted directly

from a bone in the hip, the iliac crest,
with a needle.

Meanwhile, the recipient
prepares for the transplant.

High doses of chemotherapy or radiation
kill the patient’s existing marrow,

destroying both malignant cells
and blood stem cells.

This also weakens the immune system,

making it less likely
to attack the transplanted cells.

Then the donor cells are infused into
the patient’s body through a central line.

They initially circulate
in the recipient’s peripheral bloodstream,

but molecules on the stem cells,
called chemokines, act as homing devices

and quickly traffic them
back to the marrow.

Over the course of a few weeks,

they begin to multiply and start producing
new, healthy blood cells.

Just a small population
of blood stem cells

can regenerate a whole body’s
worth of healthy marrow.

A bone marrow transplant
can also lead to something

called graft-versus-tumor activity,

when new immune cells
generated by the donated marrow

can wipe out cancer cells the recipient’s
original immune system couldn’t.

This phenomenon can help eradicate
stubborn blood cancers.

But bone marrow transplants
also come with risks,

including graft-versus-host disease.

It happens when the immune system
generated by the donor cells

attacks the patient’s organs.

This life-threatening condition
occurs in about 30–50% of patients

who receive donor cells
from anyone other than an identical twin,

particularly when the stem cells
are collected

from the blood
as opposed to the bone marrow.

Patients may take
immunosuppressant medications

or certain immune cells may be removed
from the donated sample

in order to reduce the risk
of graft-versus-host disease.

But even if a patient
avoids graft-versus-host disease,

their immune system
may reject the donor cells.

So it’s crucial to find the best match
possible in the first place.

Key regions of the genetic code
determine how the immune system

identifies foreign cells.

If these regions are similar
in the donor and the recipient,

the recipient’s immune system
is more likely to accept the donor cells.

Because these genes are inherited,
the best matches are often siblings.

But many patients
who need a bone marrow transplant

don’t have a matched family member.

Those patients
turn to donor registries of volunteers

willing to offer their bone marrow.

All it takes to be on the registry is
a cheek swab to test for a genetic match.

And in many cases,
the donation itself

isn’t much more complicated
than giving blood.

It’s a way to save someone’s life

with a resource
that’s completely renewable.

在任何特定时刻,数以万亿计的细胞
正在穿过你的血管,

有时
只需一分钟就能绕着身体转一圈。

这些细胞中的每一个
都起源于您的骨骼深处。

骨头可能看起来坚如磐石,
但实际上它们内部非常多孔。

大小血管
通过这些孔进入。

在你骨骼的大部分大骨头里面
是一个空心,

里面装满了柔软的骨髓。

骨髓含有脂肪
和其他支持组织,

但其最重要的元素
是造血干细胞。

这些干细胞不断分裂。

它们可以分化

红细胞、白细胞和血小板,每天

大约有数千亿
个新的血细胞

进入循环。

这些新细胞

通过
骨髓小毛细血管中的孔进入血液。

通过毛细血管,

它们到达较大的血管
并离开骨骼。

如果您的血液有问题,

很有
可能可以追溯到骨髓。

血癌通常
始于干细胞的基因突变。

干细胞
本身不会癌变,

但这些突变会
干扰分化过程

并导致恶性血细胞。

因此,对于
白血病和淋巴瘤等晚期血癌患者来说,

治愈的最佳机会通常
是异基因骨髓移植,

即用捐赠者的骨髓代替患者的骨髓

这是它的工作原理。

首先,
从供体中提取造血干细胞。

最常见的是,

通过将血液循环通过将血液

分离
成不同成分的机器,将血液干细胞从供体的血液中过滤出来。

在其他情况下
,骨髓是用针直接

从髋部的骨头(髂嵴)中提取的

与此同时,受者
为移植做准备。

高剂量的化疗或放疗会
杀死患者现有的骨髓,

破坏恶性细胞
和造血干细胞。

这也会削弱免疫系统,

使其不太
可能攻击移植的细胞。

然后将供体细胞
通过中心线注入患者体内。

它们最初
在接受者的外周血流中循环,

但干细胞上的分子,
称为趋化因子,充当归巢装置,

并迅速将它们
输送回骨髓。

在几周的过程中,

它们开始繁殖并开始产生
新的健康血细胞。

只需一小
部分造血干细胞

就可以再生出
相当于全身的健康骨髓。

骨髓移植
还可以导致

所谓的移植物抗肿瘤活性,


捐赠的骨髓产生的新免疫细胞

可以消灭接受者
原始免疫系统无法消灭的癌细胞时。

这种现象可以帮助根除
顽固的血癌。

但骨髓移植
也有风险,

包括移植物抗宿主病。

当供体细胞产生的免疫系统攻击患者的器官时,就会发生这种情况

这种危及生命的疾病
发生在大约 30-50% 的患者身上,这些患者

接受了
来自同卵双胞胎以外的任何人的供体细胞,

特别是当干细胞

从血液
而不是骨髓中收集时。

患者可能会服用
免疫抑制药物,

或者可能会
从捐赠的样本

中去除某些免疫细胞,以
降低移植物抗宿主病的风险。

但即使患者
避免了移植物抗宿主病,

他们的免疫系统
也可能排斥供体细胞。

因此,首先找到可能的最佳匹配至关重要

遗传密码的关键区域
决定了免疫系统如何

识别外来细胞。

如果这些区域
在供体和受体中相似,

则受体的免疫
系统更有可能接受供体细胞。

因为这些基因是遗传的,
所以最好的匹配通常是兄弟姐妹。

但许多
需要骨髓移植的患者

没有匹配的家庭成员。

这些患者
求助于愿意提供骨髓的志愿者的捐赠者登记处

在登记
处所需要的只是一个面颊拭子来测试基因匹配。

在许多情况下
,捐献本身

并不比献血复杂多少

这是一种


完全可再生的资源来挽救生命的方法。