How do blood transfusions work Bill Schutt

In 1881, doctor William Halsted
rushed to help his sister Minnie,

who was hemorrhaging after childbirth.

He quickly inserted
a needle into his arm,

withdrew his own blood,
and transferred it to her.

After a few uncertain minutes,
she began to recover.

Halsted didn’t know
how lucky they’d gotten.

His transfusion only worked
because he and his sister

happened to have the same blood type—

something that isn’t guaranteed,
even among close relatives.

Blood types hadn’t been discovered
by Halsted’s time,

though people had been experimenting
with transfusions for centuries—

mostly unsuccessfully.

In 1667, a French physician
named Jean-Baptiste Denis

became the first to try the technique
on a human.

Denis transfused sheep’s blood
into Antoine Mauroy,

a man likely suffering from psychosis,

in the hopes that it would reduce
his symptoms.

Afterward, Mauroy was in good spirits.

But after a second transfusion,
he developed a fever,

severe pain in his lower back,
intense burning in his arm,

and he urinated a thick, black liquid.

Though nobody knew it at the time,

these were the signs of a dangerous
immune response unfolding inside his body.

This immune response starts 
with the production of proteins

called antibodies,

which distinguish the body’s
own cells from intruders.

They do so by recognizing
the foreign proteins, or antigens,

embedded in an intruder’s
cell membrane.

Antibodies latch onto the antigens,

signaling other immune cells to attack
and destroy the foreign cells.

The destroyed cells are flushed
from the body in urine.

In extreme cases,
the massive break down of cells

causes clots in the bloodstream that
disrupt the flow of blood to vital organs,

overload the kidneys,
and cause organ failure.

Fortunately, Denis’s patient
survived the transfusion.

But, after other cross-species
transfusions proved fatal,

the procedure was outlawed across Europe,

falling out of favor
for several centuries.

It wasn’t until 1901
that Austrian physician Karl Landsteiner

discovered blood types,

the crucial step in the success
of human to human blood transfusions.

He noticed that when different types
were mixed together, they formed clots.

This happens when antibodies
latch on to cells with foreign antigens,

causing blood cells to clump together.

But if the donor cells are the same
blood type as the recipient’s cells,

the donor cells won’t be flagged
for destruction, and won’t form clumps.

By 1907,

doctors were mixing together small amounts
of blood before transfusing it.

If there were no clumps,
the types were a match.

This enabled them
to save thousands of lives,

laying the foundation
for modern transfusions.

Up to this point, all transfusions
had occurred in real time,

directly between two individuals.

That’s because blood
begins to clot almost immediately

after coming into contact with air—

a defense mechanism to prevent
excessive blood loss after injury.

In 1914, researchers discovered
that the chemical sodium citrate

stopped blood coagulating by removing
the calcium necessary for clot formation.

Citrated blood could be stored
for later use—

the first step in making large scale
blood transfusions possible.

In 1916, a pair of American scientists
found an even more effective anticoagulant

called heparin, which works by
deactivating enzymes that enable clotting.

We still use heparin today.

At the same time,

American and British researchers
developed portable machines

that could transport donor blood
onto the battlefields of World War I.

Combined with
the newly-discovered heparin,

medics safely stored
and preserved liters of blood,

wheeling it directly onto the battlefield
to transfuse wounded soldiers.

After the war, this crude portable box
would become the inspiration

for the modern-day blood bank,
a fixture of hospitals around the world.

1881 年,威廉·霍尔斯特德医生
赶来帮助他的妹妹米妮,

她在分娩后出血。

他迅速将
一根针插入手臂,

抽出自己的血液
,转移给她。

不确定的几分钟后,
她开始恢复。

霍尔斯特德不知道
他们有多幸运。

他的输血只是
因为他和他的妹妹

碰巧有相同的血型——

这并不能保证,
即使在近亲中也是如此。

Halsted 的时代还没有发现血型,

尽管
几个世纪以来人们一直在试验输血——

大多数都没有成功。

1667 年,一位
名叫让-巴蒂斯特·丹尼斯 (Jean-Baptiste Denis) 的法国医生

成为第一个在人类身上尝试这项
技术的人。

丹尼斯将羊血
输给了可能患有精神病的安托万·莫罗伊(Antoine Mauroy)

,希望它能减轻
他的症状。

之后,莫洛伊的心情很好。

但在第二次输血后,
他开始发烧,

腰部剧烈疼痛,
手臂剧烈灼痛,

并且尿出了浓稠的黑色液体。

虽然当时没有人知道,但

这些都是危险的
免疫反应在他体内展开的迹象。

这种免疫反应
始于称为抗体的蛋白质的

产生,

它将人体
自身的细胞与入侵者区分开来。

他们通过识别嵌入入侵者细胞膜
的外来蛋白质或抗原来做到这一点

抗体锁定在抗原上,

向其他免疫细胞发出攻击
和破坏外来细胞的信号。

被破坏的细胞通过
尿液从体内排出。

在极端情况下,
细胞的大量分解

会导致血流中的凝块,从而
破坏流向重要器官的血液,

使肾脏超负荷,
并导致器官衰竭。

幸运的是,丹尼斯的病人
在输血中幸存下来。

但是,在其他跨物种
输血被证明是致命的之后,

该程序在整个欧洲被禁止

,几个世纪以来一直失宠。

直到 1901 年
,奥地利医生 Karl Landsteiner

才发现血型,


是人类输血成功的关键一步。

他注意到,当不同的
类型混合在一起时,它们会形成凝块。

当抗体
附着在具有外来抗原的细胞上时,就会发生这种情况,

导致血细胞聚集在一起。

但如果供体细胞与受体细胞的
血型相同,

则供体细胞不会被标记
为破坏,也不会形成团块。

到 1907 年,

医生
在输血之前将少量血液混合在一起。

如果没有团块,
则类型匹配。

这使他们
能够挽救数千人的生命,

为现代输血奠定了基础。

到目前为止,所有输血
都是实时发生的,

直接在两个人之间进行。

这是因为血液在与空气接触后
几乎立即开始凝结——这是

一种防止
受伤后失血过多的防御机制。

1914 年,研究人员
发现化学柠檬酸钠

通过去除
凝块形成所需的钙来阻止血液凝固。

柠檬酸盐血液可以储存起来
以备后用——

这是使大规模
输血成为可能的第一步。

1916 年,一对美国科学家
发现了一种更有效的抗凝剂,

称为肝素,它通过
使能够凝血的酶失活而起作用。

我们今天仍然使用肝素。

与此同时,

美国和英国的研究
人员开发了便携式机器

,可以将捐献者的血液运送
到第一次世界大战的战场上。

结合新发现的肝素,

医务人员安全地储存
和保存了几升血液,将

其直接推到战场上
进行输血 受伤的士兵。

战后,这个粗糙的便携式盒子
将成为

现代血库的灵感来源,这
是世界各地医院的固定装置。