Aaron Morris How your body could become its own diagnostic lab TED Fellows

[SHAPE YOUR FUTURE]

(Slam)
Ow!

As anyone who’s stubbed a toe in the dark

or spent an hour
searching for their keys knows

we’re often limited
by what we can or cannot see.

In fact, even our own bodies
can be black boxes.

Today, I want to take you
through a vision of health care

that scientists and engineers,
myself included, are building.

We are creating a diagnostic lab
inside your body

that can provide a continuous
analysis of your health

so that we can better see
what’s happening in patients.

Currently, if someone is sick,

we may diagnose them by using a biopsy

to bring disease tissue
outside the body where we can see it.

We do this if we suspect, for instance,
that a growth might be cancerous.

Unfortunately, this approach
can’t work all the time

because of two major problems.

First, some tissues,
like brains or spinal cords,

can’t be routinely biopsied.

And second, doctors often don’t know
which tissue is causing the problem,

so they don’t know what to biopsy.

So far, we’ve dealt with these issues
using external medical tests,

like MRIs or blood tests.

These provide a broad overview
of the health of a patient,

but they can’t see
the molecular and cellular changes

that occur within tissues,

and they certainly
can’t provide enough information

to proactively treat patients
before symptoms develop.

This is unfortunate

because it’s these invisible changes
that ultimately cause disease.

Our inability to measure these changes

results in a disparity
between what we can see on a test

and what we know is happening in patients.

Let’s take multiple sclerosis
as an example.

In MS, which is an autoimmune disease,

the immune system
attacks two specific tissues:

the brain and the spinal cord,

resulting in damage
and in some cases, paralysis.

Now, we obviously can’t catch MS
by routinely biopsying people’s brains,

where there would be abundant
and active disease-inducing cells.

And we can’t catch it using a blood test

because the MS-inducing cells
are so rare and inactive in the blood

that we simply can’t see them.

Even brain imaging technologies like MRI
can’t provide the information we need

to be proactive about MS.

So we need to rethink how we see.

My coworkers at the University of Michigan
and I decided to do just that.

Instead of taking an outside-in
approach to diagnostics,

we’re taking an inside-out approach.

We are creating implantable sites

that have similarities
to other sites in the body,

and will improve our vision
by giving us real-time access

to molecular and cellular information
about diseased tissues.

These insights will enable us
to predict the onset of disease

and even identify therapies
likely to work in an individual patient.

So what does this
inside-out approach look like?

Step one is to engineer new tissues
just under the skin.

These tissues have similarities
to other inaccessible sites in the body,

like the brain or the lungs.

By implanting a porous plastic disk
made of FDA-approved biomaterials,

I can harness the body’s natural responses
to allow cells to migrate into the disk,

survive at the site and form a tissue.

Eventually, we’re left
with an engineered tissue

with integrated immune cells,

just the cells we need for diagnosis.

Although these tissues are complex
and chronically inflamed,

they’re also innocuous

and after a few weeks,
nearly imperceptible.

Our engineered tissues contain information
not present in the blood,

and they can help bridge the gap

between what we can see
on a traditional test

and cellular changes
we know occur in disease.

Step two is to read this signal.

Currently, I could take a biopsy
of my engineered site and analyze it

because I made them accessible
just under the skin.

But it would certainly be better

if we could incorporate
and read a sensor noninvasively.

Within the next decade,

rapidly converging technologies
could enable diagnosis at such an implant

by harnessing simple detectors,

like a blood pressure cuff
or smartwatch does now.

The mechanisms for diagnosing
and monitoring disease

could be as simple as opening an app,
like Candy Crush on your phone.

Step three is to harness
the huge array of knowledge

in fields like engineering
and material science

to improve these implants
and our ability to read their data.

Eventually, tens, if not hundreds
of individual engineered tissues

with integrated sensors

may be implantable
with a single application.

Now, this approach to diagnosis
is unconventional, to be sure,

but it is robust.

So far, my colleagues and I have used it

to diagnose models of metastatic cancer,

type 1 diabetes, multiple sclerosis
and organ transplant rejection.

But this is just the beginning
of what we can see.

With continuous improvements,

we will be able to truly create

a diagnostic lab inside your body

that provides a continuous
analysis of your health.

By changing how we see
what’s going wrong in patients,

we will be able to diagnose
and treat diseases better

and faster than ever before.

If you’re willing to rethink how you see,

you may be surprised what comes into view.

Thank you.

[塑造你的未来]

(满贯)
噢!

任何在黑暗中踩过脚趾

或花了一个小时
寻找钥匙的人都知道,

我们经常
受到我们能看到或不能看到的东西的限制。

事实上,即使是我们自己的身体
也可能是黑匣子。

今天,我想带
您了解

包括我自己在内的科学家和工程师正在构建的医疗保健愿景。

我们正在您体内创建一个诊断实验室

,可以持续
分析您的健康状况,

以便我们更好地
了解患者的情况。

目前,如果有人生病,

我们可以通过

活检将疾病组织带到
体外我们可以看到的地方来诊断他们。

例如,如果我们
怀疑生长可能是癌性的,我们就会这样做。

不幸的是,由于两个主要问题,这种方法
不能一直有效

首先,一些组织,
如大脑或脊髓,

不能进行常规活检。

其次,医生通常不知道是
哪个组织导致了问题,

所以他们不知道该活检什么。

到目前为止,我们已经
使用外部医学测试(

如 MRI 或血液测试)处理了这些问题。

这些提供
了患者健康状况的广泛概述,

但他们看不到组织内发生
的分子和细胞变化

而且他们当然
无法提供足够的信息


在症状出现之前主动治疗患者。

这是不幸的,

因为正是这些无形的
变化最终导致了疾病。

我们无法衡量这些变化,

导致
我们在测试中看到的

与我们所知道的患者身上发生的情况之间存在差异。

我们以多发性硬化症
为例。

在 MS(一种自身免疫性疾病)中

,免疫系统会
攻击两个特定组织

:大脑和脊髓,

导致损伤
,在某些情况下会导致瘫痪。

现在,我们显然无法
通过常规活组织检查人的大脑来感染 MS,

因为那里有丰富
且活跃的疾病诱导细胞。

而且我们无法通过血液测试来捕捉它,

因为诱导 MS 的细胞
在血液中非常罕见且不活跃,

以至于我们根本看不到它们。

即使是像 MRI 这样的脑成像技术
也无法提供我们

需要主动了解 MS 的信息。

所以我们需要重新思考我们如何看待。

我和密歇根大学的同事
决定这样做。

我们没有采用由外而内的
方法进行诊断,

而是采用了由内而外的方法。

我们正在创建

与身体其他部位相似的可植入部位,

并将
通过让我们实时访问有关患病组织

的分子和细胞信息来改善我们的视力

这些见解将使我们
能够预测疾病的发作

,甚至确定
可能对个体患者起作用的疗法。

那么这种由
内而外的方法是什么样的呢?

第一步是在皮肤下设计新组织

这些组织
与身体其他难以接近的部位有相似之处,

如大脑或肺。

通过植入
由 FDA 批准的生物材料制成的多孔塑料圆盘,

我可以利用身体的自然
反应让细胞迁移到圆盘中,

在该部位存活并形成组织。

最终,我们
得到了一个

具有整合免疫细胞的工程组织,

这正是我们诊断所需的细胞。

尽管这些组织很复杂
且长期发炎,

但它们也是无害的

,几周后
几乎察觉不到。

我们的工程组织包含
血液中不存在的信息

,它们可以帮助

弥合我们
在传统测试中看到的信息


我们知道的疾病中发生的细胞变化之间的差距。

第二步是读取这个信号。

目前,我可以
对我的工程部位进行活组织检查并进行分析,

因为我让它们
可以在皮肤下进行。

但是,

如果我们能够
以非侵入方式整合和读取传感器,那肯定会更好。

在接下来的十年中,

快速融合的技术
可以

通过利用简单的检测器来对这种植入物进行诊断,

就像现在的血压袖带
或智能手表一样。

诊断
和监测疾病的机制

可以像在手机上打开一个应用程序一样简单,
比如 Candy Crush。

第三步是利用

工程
和材料科学等领域的大量知识

来改进这些植入物
和我们读取它们数据的能力。

最终,数十个(如果不是数百个)具有集成传感器
的单独工程组织

可以
通过单个应用程序植入。

现在
,可以肯定的是,这种诊断方法是非常规的,

但它是稳健的。

到目前为止,我和我的同事已经用它

来诊断转移性癌症、

1 型糖尿病、多发性硬化症
和器官移植排斥的模型。

但这
只是我们可以看到的开始。

随着不断的改进,

我们将能够真正

在您的体内创建一个诊断实验室

,持续
分析您的健康状况。

通过改变我们看待
患者问题的方式,

我们将能够比以往更好、更快地诊断
和治疗疾病

如果你愿意重新思考你的看法,

你可能会惊讶于你所看到的。

谢谢你。