How does your body know what time it is Marco A. Sotomayor

In 1962, a cave explorer
named Michel Siffre

started a series of experiments where
he isolated himself underground for months

without light or clocks.

He attached himself to electrodes
that monitored his vital signs

and kept track of when he slept and ate.

When Siffre finally emerged,

the results of his pioneering experiments

revealed that his body had kept
to a regular sleeping-waking cycle.

Despite having no external cues,

he fell asleep,

woke up,

and ate at fixed intervals.

This became known as a circadian rhythm
from the Latin for “about a day.”

Scientists later found these rhythms
affect our hormone secretion,

how our bodies process food,

and even the effects
of drugs on our bodies.

The field of sciences studying
these changes is called chronobiology.

Being able to sense time helps us do
everything from waking and sleeping

to knowing precisely when to catch a ball
that’s hurtling towards us.

We owe all these abilities to
an interconnected system of timekeepers

in our brains.

It contains the equivalent of a stopwatch
telling us how many seconds elapsed,

a clock counting the hours of the day,

and a calendar notifying us
of the seasons.

Each one is located in
a different brain region.

Siffre, stuck in his dark cave, relied
on the most primitive clock

in the suprachiasmatic nucleus, or SCN
of the hypothalamus.

Here’s the basics of how we think it works
based on fruitfly and mouse studies.

Proteins known as CLK, or clock,
accumulate in the SCN throughout the day.

In addition to activating genes
that tell us to stay awake,

they make another protein called PER.

When enough PER accumulates,

it deactivates the gene that makes CLK,

eventually making us fall asleep.

Then, clock falls low, so PER
concentrations also drop again,

allowing CLK to rise,

starting the cycle over.

There are other proteins involved,

but our day and night cycle may be driven
in part by this seesaw effect

between CLK by day and PER by night.

For more precision,

our SCNs also rely
on external cues

like light,

food,

noise,

and temperature.

We called these zeitgebers,

German for “givers of time.”

Siffre lacked many
of these cues underground,

but in normal life, they fine tune
our daily behavior.

For instance, as natural morning light
filters into our eyes,

it helps wake us up.

Traveling through the optic nerve
to the SCN,

it communicates what’s happening
in the outside world.

The hypothalamus then halts
the production of melatonin,

a hormone that triggers sleep.

At the same time,

it increases the production
of vasopressin

and noradrenaline throughout the brain,

which help control our sleep cycles.

At about 10 am,

the body’s rising temperature drives up
our energy and alertness,

and later in the afternoon,

it also improves our muscle activity
and coordination.

Bright screens at night can confuse
these signals,

which is why binging on TV before bed
makes it harder to sleep.

But sometimes we need to be
even more precise when telling the time,

which is where the brain’s internal
stopwatch chimes in.

One theory for how this works
involves the fact

that communication between a given
pair of neurons

always takes roughly the same
amount of time.

So neurons in our cortex
and other brain areas

may communicate in scheduled,
predictable loops

that the cortex uses to judge
with precision how much time has passed.

That creates our perception of time.

In his cave, Siffre made a fascinating
additional discovery about this.

Every day, he challenged himself
to count up to 120

at the rate of one digit per second.

Over time, instead of taking two minutes,
it began taking him as long as five.

Life in the lonely, dark cave had warped
Siffre’s own perception of time

despite his brain’s best efforts
to keep him on track.

This makes us wonder what else influences
our sense of time.

And if time isn’t objective,
what does that mean?

Could each of us
be experiencing it differently?

Only time will tell.

1962 年,一位名叫 Michel Siffre 的洞穴探险家

开始了一系列实验,在没有灯光或时钟的情况下,
他将自己隔离在地下数月

他将自己固定在电极
上,这些电极监测他的生命体征

并记录他何时睡觉和吃饭。

当 Siffre 最终出现时,

他开创性的实验

结果表明,他的身体一直
保持着规律的睡眠-觉醒周期。

尽管没有外部线索,

他还是按固定时间入睡、

醒来

和进食。


在拉丁语中被称为“大约一天”的昼夜节律。

科学家后来发现,这些节律
会影响我们的激素分泌、

我们的身体如何处理食物,

甚至
药物对我们身体的影响。

研究这些变化的科学领域
称为时间生物学。

能够感知时间可以帮助我们做
所有事情,从醒来和睡觉

到准确地知道什么时候接住一个
向我们飞来的球。

我们将所有这些能力
归功于我们大脑中相互关联的计时器系统

它相当于一个秒表,
告诉我们已经过去了多少秒,

一个时钟计算一天中的小时数,

以及一个通知我们季节的日历

每一个都
位于不同的大脑区域。

Siffre 被困在他黑暗的洞穴中,依赖

于视交叉上核或
下丘脑 SCN 中最原始的时钟。

以下是我们根据果蝇和小鼠研究认为它如何工作的基础知识

被称为 CLK 或时钟的蛋白质
全天在 SCN 中积累。

除了激活
告诉我们保持清醒的基因外,

它们还会制造另一种称为 PER 的蛋白质。

当积累足够多的 PER 时,

它会使产生 CLK 的基因失活,

最终让我们入睡。

然后,时钟下降到低电平,因此 PER
浓度也再次下降,

使 CLK 上升,

开始循环。

还涉及其他蛋白质,

但我们的昼夜循环可能
部分是

由白天 CLK 和夜间 PER 之间的这种跷跷板效应驱动的。

为了更精确,

我们的 SCN 还依赖

光、

食物、

噪音

和温度等外部线索。

我们称这些

zeitgebers 为德语,意为“时间的给予者”。

Siffre 在
地下缺乏许多这些线索,

但在正常生活中,它们会微调
我们的日常行为。

例如,当自然
晨光渗入我们的眼睛时,

它有助于唤醒我们。

它通过视神经
到达 SCN

,传达外界正在发生的
事情。

然后下丘脑
停止产生褪黑激素,褪黑

激素是一种触发睡眠的激素。

同时,

它会增加整个大脑
中血管加压素

和去甲肾上腺素的产生,

这有助于控制我们的睡眠周期。

上午 10 点左右

,身体不断升高的温度提升了
我们的精力和警觉性,

而在下午晚些时候,

它还改善了我们的肌肉活动
和协调性。

晚上明亮的屏幕会混淆
这些信号,

这就是为什么睡前看电视
会让人更难入睡。

但有时我们
在报时时需要更加精确,

这是大脑内部
秒表

起作用的地方。关于其工作原理的一个理论
涉及这样一个事实

,即一对给定神经元之间的通信

总是花费大致
相同的时间。

因此,我们皮层
和其他大脑区域中的神经元

可以通过预定的、
可预测的循环进行交流

,皮层使用这些循环来
精确判断已经过去了多少时间。

这创造了我们对时间的感知。

在他的洞穴中,Siffre 对此做了一个有趣的
额外发现。

每天,他都挑战自己

以每秒一位数的速度数到 120。

随着时间的推移,他开始花费五分钟,而不是两分钟
。 尽管他的大脑尽了最大的努力让他走上正轨,但

在孤独、黑暗的洞穴中的生活已经扭曲了
西弗尔自己对时间的看法

这让我们想知道还有什么影响
我们的时间感。

如果时间不是客观的,
那意味着什么?

我们每个人
都会有不同的经历吗?

只有时间会给出答案。