How rollercoasters affect your body Brian D. Avery

In the summer of 1895,
crowds flooded the Coney Island boardwalk

to see the latest marvel
of roller coaster technology:

the Flip Flap Railway.

This was America’s first-ever looping coaster

– but its thrilling flip came at a price.

The ride caused numerous cases of
severe whiplash,

neck injury and even ejections,

all due to its signature loop.

Today, coasters can pull off
far more exciting tricks,

without resorting to the “thrill”
of a hospital visit.

But what exactly are roller coasters
doing to your body,

and how have they managed to get scarier
and safer at the same time?

At the center of every roller coaster
design is gravity.

Unlike cars or transit trains,

most coasters are propelled around their tracks

almost entirely by gravitational energy.

After the coaster crests the initial lift hill,

it begins an expertly engineered cycle –

building potential energy on ascents
and expending kinetic energy on descents.

This rhythm repeats throughout the ride,

acting out the coaster engineer’s
choreographed dance

of gravitational energy.

But there’s a key variable in this cycle
that wasn’t always so carefully considered:

you.

In the days of the Flip-Flap,

ride designers were most concerned
with coasters getting stuck

somewhere along the track.

This led early builders to overcompensate,

hurling trains down hills

and pulling on the brakes
when they reached the station.

But as gravity affects the cars,
it also affects the passengers.

And under the intense conditions
of a coaster,

gravity’s effects are multiplied.

There’s a common unit used by jet pilots,

astronauts,

and coaster designers called “g force”.

One G force is the familiar tug of gravity
you feel when standing on Earth

– this is the force of Earth’s
gravitational pull on our bodies.

But as riders accelerate and decelerate,

they experience more or less
gravitational force.

Modern ride designers know that the
body can handle up to roughly 5 Gs,

but the Flip-Flap and its contemporaries
routinely reached up to 12 Gs.

At those levels of gravitational pressure,

blood is sent flying from your brain
to your feet,

leading to light-headedness or blackouts

as the brain struggles to stay conscious.

And oxygen deprivation in the retinal cells
impairs their ability to process light,

causing greyed out vision or temporary blindness.

If the riders are upside down,
blood can flood the skull,

causing a bout of crimson vision
called a “redout”.

Conversely, negative G’s
create weightlessness.

Within the body,

short-term weightlessness
is mostly harmless.

It can contribute to a rider’s
motion sickness

by suspending the fluid in
their inner ears

which coordinates balance.

But the bigger potential danger

– and thrill –

comes from what ride designers
call airtime.

This is when riders typically
experience seat separation,

and, without the proper precautions,

ejection.

The numerous belts and harnesses
of modern coasters

have largely solved this issue,

but the passenger’s ever-changing position
can make it difficult

to determine what needs to be
strapped down.

Fortunately, modern ride designers
are well aware

of what your body, and the coaster,

can handle.

Coaster engineers play these competing
forces against each other,

to relieve periods of intense pressure
with periods of no pressure at all.

And since a quick transition from
positive to negative G-force

can result in whiplash, headaches,
and back and neck pain,

they avoid the extreme changes
in speed and direction

so common in thrill rides of old.

Modern rides are also much sturdier,

closely considering the amount
of gravity they need to withstand.

At 5 G’s, your body feels 5 times heavier;

so if you weigh 100lbs,

you’d exert the weight of 500 lbs
on the coaster.

Engineers have to account for
the multiplied weight

of every passenger when designing
a coaster’s supports.

Still, these rides aren’t for everyone.

The floods of adrenaline,
light-headedness, and motion sickness

aren’t going anywhere soon.

But today’s redundant restraints,
3D modeling and simulation software

have made roller coasters safer
and more thrilling than ever.

Our precise knowledge about the
limits of the human body

have helped us build coasters that are
faster, taller, and loopier

– and all without going off the rails.

1895 年夏天,
人群涌入康尼岛木板路

,观看最新
的过山车技术奇迹

:翻板铁路。

这是美国有史以来第一个环形过山车

——但它惊心动魄的翻转是有代价的。

骑行造成了许多
严重的鞭打、

颈部受伤甚至弹射,

这一切都是由于它的标志性循环。

今天,杯垫可以完成
更令人兴奋的花样,

而无需诉诸医院访问的“刺激
”。

但是过山车到底
对你的身体做了什么

,它们是如何同时变得
更可怕和更安全的呢?

每个过山车设计的中心
都是重力。

与汽车或运输火车不同,

大多数过山车

几乎完全由重力推动其轨道。

在过山车到达最初的升降山峰后,

它开始了一个经过专业设计的循环——

在上升时建立势能,
在下降时消耗动能。

这种节奏在整个旅程中不断重复,

表现出过山车工程师
精心设计

的引力能量之舞。

但在这个周期中有一个关键变量
并不总是被仔细考虑:

你。

在 Flip-Flap 时代,

游乐设施设计师最
担心过山车卡

在轨道上的某个地方。

这导致早期的建设者过度补偿,将

火车从山上扔下,

并在
到达车站时踩刹车。

但由于重力影响汽车,
它也会影响乘客。

在过山车的激烈条件
下,

重力的影响成倍增加。

喷气式飞机飞行员、

宇航员

和过山车设计师使用的通用单位称为“g force”。

一个 G 力是
你站在地球上时所感受到的熟悉

的引力——这是地球
对我们身体的引力。

但随着骑手加速和减速,

他们或多或少会受到
重力的影响。

现代骑行设计师知道
车身可以承受大约 5 Gs,

但 Flip-Flap 及其同时代产品
通常会达到 12 Gs。

在这些重力压力水平下,

血液从你的大脑
飞到你的脚,

当大脑努力保持清醒时,会导致头晕或昏厥。

视网膜细胞缺氧
会损害它们处理光的能力,

导致视力变灰或暂时失明。

如果骑手倒置,
血液会淹没头骨,

导致一轮
被称为“redout”的深红色视觉。

相反,负 G 会
产生失重。

在体内,

短期
失重大多是无害的。

它可以

通过将液体悬浮在

协调平衡的内耳中来导致骑手的晕车。

但更大的潜在危险

——和刺激——

来自游乐设施设计师
所说的通话时间。

这是骑手通常会
遇到座椅分离的情况,

并且在没有适当预防措施的情况下会被

弹射。 现代过山车

的众多安全带和
安全带在

很大程度上解决了这个问题,

但乘客不断变化的位置
可能会

导致难以确定需要
系紧什么。

幸运的是,现代骑行设计师
非常

清楚您的身体和过山车

可以处理什么。

过山车工程师将这些相互竞争的
力量相互对抗,

以缓解压力大
的时期和完全没有压力的时期。

并且由于从
正向 G 力到负向 G 力的快速过渡

会导致挥鞭、头痛
以及背部和颈部疼痛,

因此它们避免了

过去的惊险游乐设施中常见的速度和方向的极端变化。

现代游乐设施也更加坚固,

仔细考虑了
它们需要承受的重力。

在 5 G 时,您的身体感觉重 5 倍;

所以如果你重 100 磅,

你会在过山车上施加 500 磅的重量

在设计过山车的支架时,工程师必须考虑每位乘客的成倍重量

不过,这些游乐设施并不适合所有人。

肾上腺素
、头晕和晕车

的泛滥不会很快消失。

但是今天的冗余约束、
3D 建模和模拟

软件使过山车
比以往任何时候都更安全、更刺激。

我们
对人体极限的精确了解

帮助我们建造了
更快、更高、更循环的过山车

——而且所有这些都不会偏离轨道。