This tiny particle could roam your body to find tumors Sangeeta Bhatia

In the space that used
to house one transistor,

we can now fit one billion.

That made it so that a computer
the size of an entire room

now fits in your pocket.

You might say the future is small.

As an engineer,

I’m inspired by this miniaturization
revolution in computers.

As a physician,

I wonder whether we could use it
to reduce the number of lives lost

due to one of the fastest-growing
diseases on Earth:

cancer.

Now when I say that,

what most people hear me say
is that we’re working on curing cancer.

And we are.

But it turns out

that there’s an incredible
opportunity to save lives

through the early detection
and prevention of cancer.

Worldwide, over two-thirds of deaths
due to cancer are fully preventable

using methods that we already
have in hand today.

Things like vaccination, timely screening

and of course, stopping smoking.

But even with the best tools
and technologies that we have today,

some tumors can’t be detected

until 10 years after
they’ve started growing,

when they are 50 million
cancer cells strong.

What if we had better technologies

to detect some of these more
deadly cancers sooner,

when they could be removed,

when they were just getting started?

Let me tell you about how
miniaturization might get us there.

This is a microscope in a typical lab

that a pathologist would use
for looking at a tissue specimen,

like a biopsy or a pap smear.

This $7,000 microscope

would be used by somebody
with years of specialized training

to spot cancer cells.

This is an image from a colleague
of mine at Rice University,

Rebecca Richards-Kortum.

What she and her team have done
is miniaturize that whole microscope

into this $10 part,

and it fits on the end
of an optical fiber.

Now what that means is instead
of taking a sample from a patient

and sending it to the microscope,

you can bring the microscope
to the patient.

And then, instead of requiring
a specialist to look at the images,

you can train the computer to score
normal versus cancerous cells.

Now this is important,

because what they found
working in rural communities,

is that even when they have
a mobile screening van

that can go out into the community
and perform exams

and collect samples

and send them to the central
hospital for analysis,

that days later,

women get a call
with an abnormal test result

and they’re asked to come in.

Fully half of them don’t turn up
because they can’t afford the trip.

With the integrated microscope
and computer analysis,

Rebecca and her colleagues
have been able to create a van

that has both a diagnostic setup
and a treatment setup.

And what that means
is that they can do a diagnosis

and perform therapy on the spot,

so no one is lost to follow up.

That’s just one example of how
miniaturization can save lives.

Now as engineers,

we think of this
as straight-up miniaturization.

You took a big thing
and you made it little.

But what I told you before about computers

was that they transformed our lives

when they became small enough
for us to take them everywhere.

So what is the transformational
equivalent like that in medicine?

Well, what if you had a detector

that was so small that it could
circulate in your body,

find the tumor all by itself

and send a signal to the outside world?

It sounds a little bit
like science fiction.

But actually, nanotechnology
allows us to do just that.

Nanotechnology allows us to shrink
the parts that make up the detector

from the width of a human hair,

which is 100 microns,

to a thousand times smaller,

which is 100 nanometers.

And that has profound implications.

It turns out that materials
actually change their properties

at the nanoscale.

You take a common material like gold,

and you grind it into dust,
into gold nanoparticles,

and it changes from looking
gold to looking red.

If you take a more exotic material
like cadmium selenide –

forms a big, black crystal –

if you make nanocrystals
out of this material

and you put it in a liquid,

and you shine light on it,

they glow.

And they glow blue, green,
yellow, orange, red,

depending only on their size.

It’s wild! Can you imagine an object
like that in the macro world?

It would be like all the denim jeans
in your closet are all made of cotton,

but they are different colors
depending only on their size.

(Laughter)

So as a physician,

what’s just as interesting to me

is that it’s not just
the color of materials

that changes at the nanoscale;

the way they travel
in your body also changes.

And this is the kind of observation
that we’re going to use

to make a better cancer detector.

So let me show you what I mean.

This is a blood vessel in the body.

Surrounding the blood vessel is a tumor.

We’re going to inject nanoparticles
into the blood vessel

and watch how they travel
from the bloodstream into the tumor.

Now it turns out that the blood vessels
of many tumors are leaky,

and so nanoparticles can leak out
from the bloodstream into the tumor.

Whether they leak out
depends on their size.

So in this image,

the smaller, hundred-nanometer,
blue nanoparticles are leaking out,

and the larger, 500-nanometer,
red nanoparticles

are stuck in the bloodstream.

So that means as an engineer,

depending on how big
or small I make a material,

I can change where it goes in your body.

In my lab, we recently made
a cancer nanodetector

that is so small that it could travel
into the body and look for tumors.

We designed it to listen
for tumor invasion:

the orchestra of chemical signals
that tumors need to make to spread.

For a tumor to break out
of the tissue that it’s born in,

it has to make chemicals called enzymes

to chew through
the scaffolding of tissues.

We designed these nanoparticles
to be activated by these enzymes.

One enzyme can activate a thousand
of these chemical reactions in an hour.

Now in engineering, we call
that one-to-a-thousand ratio

a form of amplification,

and it makes something ultrasensitive.

So we’ve made an ultrasensitive
cancer detector.

OK, but how do I get this activated
signal to the outside world,

where I can act on it?

For this, we’re going to use
one more piece of nanoscale biology,

and that has to do with the kidney.

The kidney is a filter.

Its job is to filter out the blood
and put waste into the urine.

It turns out that what the kidney filters

is also dependent on size.

So in this image, what you can see

is that everything smaller
than five nanometers

is going from the blood,
through the kidney, into the urine,

and everything else
that’s bigger is retained.

OK, so if I make a 100-nanometer
cancer detector,

I inject it in the bloodstream,

it can leak into the tumor
where it’s activated by tumor enzymes

to release a small signal

that is small enough to be
filtered out of the kidney

and put into the urine,

I have a signal in the outside world
that I can detect.

OK, but there’s one more problem.

This is a tiny little signal,

so how do I detect it?

Well, the signal is just a molecule.

They’re molecules
that we designed as engineers.

They’re completely synthetic,
and we can design them

so they are compatible
with our tool of choice.

If we want to use a really
sensitive, fancy instrument

called a mass spectrometer,

then we make a molecule
with a unique mass.

Or maybe we want make something
that’s more inexpensive and portable.

Then we make molecules
that we can trap on paper,

like a pregnancy test.

In fact, there’s a whole
world of paper tests

that are becoming available
in a field called paper diagnostics.

Alright, where are we going with this?

What I’m going to tell you next,

as a lifelong researcher,

represents a dream of mine.

I can’t say that’s it’s a promise;

it’s a dream.

But I think we all have to have dreams
to keep us pushing forward,

even – and maybe especially –
cancer researchers.

I’m going to tell you what I hope
will happen with my technology,

that my team and I will put
our hearts and souls

into making a reality.

OK, here goes.

I dream that one day,

instead of going into
an expensive screening facility

to get a colonoscopy,

or a mammogram,

or a pap smear,

that you could get a shot,

wait an hour,

and do a urine test on a paper strip.

I imagine that this could even happen

without the need for steady electricity,

or a medical professional in the room.

Maybe they could be far away

and connected only by the image
on a smartphone.

Now I know this sounds like a dream,

but in the lab we already
have this working in mice,

where it works better
than existing methods

for the detection of lung,
colon and ovarian cancer.

And I hope that what this means

is that one day we can
detect tumors in patients

sooner than 10 years
after they’ve started growing,

in all walks of life,

all around the globe,

and that this would lead
to earlier treatments,

and that we could save more lives
than we can today,

with early detection.

Thank you.

(Applause)


曾经容纳一个晶体管的空间里,

我们现在可以容纳十亿个。

这样一
来,整个房间大小的计算机

现在都可以放在口袋里了。

你可能会说未来很小。

作为一名工程师,

我受到计算机小型化
革命的启发。

作为一名医生,

我想知道我们是否可以用它
来减少

因地球上增长最快的疾病之一而丧生的人数

癌症。

现在当我这么说的时候

,大多数人听到我说
的是我们正在努力治愈癌症。

我们是。

但事实

证明,

通过早期发现
和预防癌症来挽救生命是一个难得的机会。

在全球范围内,

使用我们
今天已经掌握的方法可以完全预防三分之二以上的癌症死亡。

比如疫苗接种、及时筛查

,当然还有戒烟。

但即使使用我们今天拥有的最好的工具
和技术,

有些肿瘤要

等到它们开始生长 10 年后才能被检测到

那时它们的癌细胞数量为 5000 万

如果我们有更好的技术

可以更快地发现这些更
致命的癌症,

当它们可以被移除时,

当它们刚刚开始时呢?

让我告诉你
小型化如何让我们到达那里。

这是典型实验室中的显微镜,

病理学家会使用它
来观察组织标本,

例如活检或子宫颈抹片检查。

这台价值 7,000 美元的显微镜

将供
受过多年专业训练的人

用来发现癌细胞。


是我在莱斯大学的一位同事

Rebecca Richards-Kortum 拍摄的照片。

她和她的团队所做的
是将整个显微镜小型

化成这个 10 美元的部件

,它可以安装在
光纤的末端。

现在这意味着您可以将显微镜带给
患者,而不是从患者身上采集样本

并将其发送到显微镜

然后,

您可以训练计算机对
正常细胞和癌细胞进行评分,而不需要专家查看图像。

现在这很重要,

因为他们发现
在农村社区工作的

是,即使他们有
一辆移动筛查车

,可以到
社区进行检查

,收集样本

并将其送到中央
医院进行分析,

那几天后 ,

女性
接到一个测试结果异常的电话

,她们被要求进来。

她们中有一半没有出现,
因为她们负担不起这次旅行。

通过集成显微镜
和计算机分析,

Rebecca 和她的同事
们已经能够制造出

一辆既有诊断装置
又有治疗装置的货车。


意味着他们可以

在现场进行诊断和治疗,

因此没有人会失去跟进。

这只是
小型化如何拯救生命的一个例子。

现在作为工程师,

我们认为这
是直接的小型化。

你拿了一件大事
,却做了一件小事。

但是我之前告诉过你关于计算机的内容

是,

当它们变得足够小
,我们可以随身携带它们时,它们改变了我们的生活。

那么医学中的转化
等价物是什么?

那么,如果你有一个

小到可以
在你体内循环的探测器,它会

自行找到肿瘤

并向外界发送信号呢?

这听起来有点
像科幻小说。

但实际上,纳米技术
让我们能够做到这一点。

纳米技术使我们
能够将构成探测器的部件

从人类头发

的宽度(100 微米)

缩小到小一千倍,

即 100 纳米。

这具有深远的影响。

事实证明,材料
实际上在纳米尺度上改变了它们的特性

你拿一种普通的材料,比如金子

,把它磨成灰尘,
磨成金纳米粒子

,它就从
看起来金子变成了红色。

如果你采用一种更奇特的材料,
比如硒化镉——

形成一个大的黑色晶体——

如果你用这种材料制造纳米晶体

然后把它放在液体中,

然后用光照射它,

它们就会发光。

它们发出蓝色、绿色、
黄色、橙色、红色,

仅取决于它们的大小。

很狂野! 你能
想象在宏观世界中这样的物体吗?

就像
你衣橱里所有的牛仔裤都是棉制的,

但它们的颜色
不同,只取决于它们的尺寸。

(笑声)

所以作为一名医生,

对我来说同样有趣的

是,

在纳米尺度变化的不仅仅是材料的颜色;

它们
在您体内的传播方式也会发生变化。


就是我们将

用来制造更好的癌症检测器的观察结果。

所以让我告诉你我的意思。

这是体内的血管。

血管周围是肿瘤。

我们将把纳米粒子
注入血管

,观察它们如何
从血流进入肿瘤。

现在事实证明,
许多肿瘤的血管是渗漏的

,因此纳米颗粒可以
从血流中渗漏到肿瘤中。

它们是否泄漏
取决于它们的大小。

所以在这张图片中

,较小的 100 纳米
蓝色纳米粒子正在泄漏,

而较大的 500 纳米
红色纳米粒子

卡在血液中。

所以这意味着作为一名工程师,

根据
我制作材料的大小,

我可以改变它在你体内的位置。

在我的实验室中,我们最近制造
了一种癌症纳米探测器

,它非常小,可以
进入体内并寻找肿瘤。

我们设计它来
监听肿瘤侵袭

:肿瘤需要产生的化学信号
才能扩散。

为了使肿瘤
从其出生的组织中破裂出来,

它必须制造称为酶的化学物质

来咀嚼
组织的支架。

我们设计这些纳米颗粒
被这些酶激活。

一种酶可以
在一小时内激活上千个这样的化学反应。

现在在工程中,我们称
这种千分之一的比例

是一种放大形式

,它使某些东西变得非常敏感。

所以我们制作了一个超灵敏的
癌症检测器。

好的,但是我如何将这个激活的
信号传递给外部世界,

我可以在哪里对其采取行动?

为此,我们将
使用更多的纳米级生物学

,这与肾脏有关。

肾脏是一个过滤器。

它的工作是过滤掉血液
并将废物放入尿液中。

事实证明,肾脏过滤的

内容也取决于大小。

所以在这张图片中,你可以看到

小于 5 纳米

的所有东西都从血液
、肾脏、尿液进入,

而其他
更大的东西都被保留了下来。

好的,所以如果我制造一个 100 纳米的
癌症检测器,

我将它注入血液中,

它可以渗入肿瘤
,在那里它被肿瘤酶激活,

释放出一个小信号

,小到足以
从肾脏中过滤出来

并放入 进入尿液,

我在外界有一个信号
,我可以检测到。

好的,但还有一个问题。

这是一个很小的信号,

那么我该如何检测呢?

好吧,信号只是一个分子。

它们
是我们作为工程师设计的分子。

它们是完全合成的
,我们可以设计它们,

使它们
与我们选择的工具兼容。

如果我们想使用一种非常
灵敏、花哨的仪器,

称为质谱仪,

那么我们就会制造出
具有独特质量的分子。

或者,也许我们想要制作
更便宜、更便携的东西。

然后我们制造
可以捕获在纸上的分子,

例如妊娠试验。

事实上,

在称为纸质诊断的领域中,有大量纸质测试可供使用。

好吧,我们要去哪里?

我接下来要告诉你的是,

作为一名终身研究员,

代表了我的一个梦想。

我不能说这是一个承诺;

这只是个梦。

但我认为我们都必须有梦想
才能让我们继续前进,

甚至——也许尤其是——
癌症研究人员。

我将告诉你我希望
我的技术会发生什么

,我和我的团队将全心全意

投入到实现中。

好的,这就去。

我梦想有一天,

与其
去昂贵的筛查机构

进行结肠镜检查

、乳房 X 光检查

或子宫颈抹片检查,

不如打针,

等待一个小时,

然后在纸条上进行尿检。

我想这甚至可以

在不需要稳定的电力

或房间里的医疗专业人员的情况下发生。

也许他们可能很远

,只能通过
智能手机上的图像连接。

现在我知道这听起来像是一个梦想,

但在实验室中,我们
已经在老鼠身上进行了这项工作,


比现有

的检测肺癌、
结肠癌和卵巢癌的方法效果更好。

我希望这意味着

有一天我们可以在全球各行各业的
患者

开始生长后的 10 年内检测出肿瘤

,这将
导致更早的治疗,

并且 通过及早发现,我们可以挽救比今天更多的生命

谢谢你。

(掌声)