You smell with your body not just your nose Jennifer Pluznick

Here’s a question for you:

how many different scents
do you think you can smell,

and maybe even identify with accuracy?

100?

300?

1,000?

One study estimates that humans can
detect up to one trillion different odors.

A trillion.

It’s hard to imagine,

but your nose has the molecular
machinery to make it happen.

Olfactory receptors –

tiny scent detectors –

are packed into your nose,

each one patiently waiting
to be activated by the odor,

or ligand,

that it’s been assigned to detect.

It turns out we humans,
like all vertebrates,

have lots of olfactory receptors.

In fact, more of our DNA is devoted
to genes for different olfactory receptors

than for any other type of protein.

Why is that?

Could olfactory receptors
be doing something else

in addition to allowing us to smell?

In 1991, Linda Buck and Richard Axel
uncovered the molecular identity

of olfactory receptors –

work which ultimately
led to a Nobel Prize.

At the time,

we all assumed that these receptors
were only found in the nose.

However, about a year or so later,

a report emerged of an olfactory
receptor expressed in a tissue

other than the nose.

And then another such report emerged,

and another.

We now know that these receptors
are found all over the body,

including in some pretty
unexpected places –

in muscle,

in kidneys,

lungs

and blood vessels.

But what are they doing there?

Well, we know that olfactory receptors
act as sensitive chemical sensors

in the nose –

that’s how they mediate
our sense of smell.

It turns out they also act
as sensitive chemical sensors

in many other parts of the body.

Now, I’m not saying that your liver can
detect the aroma of your morning coffee

as you walk into the kitchen.

Rather, after you drink
your morning coffee,

your liver might use an olfactory receptor

to chemically detect
the change in concentration

of a chemical floating
through your bloodstream.

Many cell types and tissues in the body
use chemical sensors,

or chemosensors,

to keep track of the concentration
of hormones, metabolites

and other molecules,

and some of these chemosensors
are olfactory receptors.

If you are a pancreas or a kidney

and you need a specialized chemical sensor

that will allow you to keep track
of a specific molecule,

why reinvent the wheel?

One of the first examples

of an olfactory receptor
found outside the nose

showed that human sperm
express an olfactory receptor,

and that sperm with this receptor
will seek out the chemical

that the receptor responds to –

the receptor’s ligand.

That is, the sperm
will swim toward the ligand.

This has intriguing implications.

Are sperm aided in finding the egg

by sniffing out the area
with the highest ligand concentration?

I like this example
because it clearly demonstrates

that an olfactory receptor’s primary job
is to be a chemical sensor,

but depending on the context,

it can influence how you perceive a smell,

or in which direction sperm will swim,

and as it turns out,

a huge variety of other processes.

Olfactory receptors have been
implicated in muscle cell migration,

in helping the lung to sense
and respond to inhaled chemicals,

and in wound healing.

Similarly, taste receptors once thought
to be found only in the tongue,

are now known to be expressed
in cells and tissues throughout the body.

Even more surprisingly,

a recent study found

that the light receptors in our eyes
also play a role in our blood vessels.

In my lab,

we work on trying to understand the roles
of olfactory receptors and taste receptors

in the context of the kidney.

The kidney is a central
control center for homeostasis.

And to us,

it makes sense that a homeostatic
control center would be a logical place

to employ chemical sensors.

We’ve identified a number
of different olfactory and taste receptors

in the kidney,

one of which, olfactory receptor 78,

is known to be expressed
in cells and tissues

that are important
in the regulation of blood pressure.

When this receptor is deleted in mice,

their blood pressure is low.

Surprisingly, this receptor
was found to respond

to chemicals called
short-chain fatty acids

that are produced by the bacteria
that reside in your gut –

your gut microbiota.

After being produced
by your gut microbiota,

these chemicals are absorbed
into your bloodstream

where they can then
interact with receptors

like olfactory receptor 78,

meaning that the changes
in metabolism of your gut microbiota

may influence your blood pressure.

Although we’ve identified a number
of different olfactory and taste receptors

in the kidney,

we’ve only just begun
to tease out their different functions

and to figure out which chemicals
each of them responds to.

Similar investigations lie ahead
for many other organs and tissues –

only a small minority of receptors
has been studied to date.

This is exciting stuff.

It’s revolutionizing our understanding
of the scope of influence

for one of the five senses.

And it has the potential
to change our understanding

of some aspects of human physiology.

It’s still early,

but I think we’ve picked up on the scent
of something we’re following.

(Laughter)

Thank you.

(Applause)

这里有一个问题要问你:

你认为你能闻到多少种不同的气味,

甚至可以准确识别?

100?

300?

1,000?

一项研究估计,人类可以
检测到多达一万亿种不同的气味。

一万亿。

很难想象,

但你的鼻子有
实现它的分子机制。

嗅觉受体——

微小的气味探测器

——装在你的鼻子里,

每一个都耐心地
等待被分配检测的气味

或配

体激活。

事实证明,我们人类
和所有脊椎动物一样,

有很多嗅觉受体。

事实上,与任何其他类型的蛋白质相比,我们更多的 DNA
用于不同嗅觉受体

的基因。

这是为什么?

除了让我们闻到气味之外,嗅觉受体还能做其他事情吗?

1991 年,Linda Buck 和 Richard Axel
发现了嗅觉受体的分子特性

——

这项工作最终
获得了诺贝尔奖。

当时,

我们都认为这些受体
只存在于鼻子中。

然而,大约一年左右后,

出现了关于在鼻子以外
的组织中表达嗅觉受体的报告

然后另一个这样的报告出现了

,另一个。

我们现在知道这些受体
遍布全身,

包括一些非常
意想不到的地方

——肌肉

、肾脏、

和血管。

但他们在那里做什么?

好吧,我们知道嗅觉受体在鼻子中
充当敏感的化学传感器

——

这就是它们调节
我们嗅觉的方式。

事实证明,它们还在

身体的许多其他部位充当敏感的化学传感器。

现在,我并不是说当您走进厨房时,您的肝脏可以
检测到早晨咖啡的香气

相反,在
你早上喝咖啡后,

你的肝脏可能会使用一种嗅觉受体

来化学检测

漂浮
在你血液中的化学物质浓度的变化。

身体中的许多细胞类型和组织
使用化学传感器

或化学传感器

来跟踪
激素、代谢物

和其他分子的浓度,

其中一些化学传感器
是嗅觉受体。

如果您是胰腺或肾脏

,您需要一个专门的化学传感器


跟踪特定分子,

为什么要重新发明轮子? 在鼻子外发现的嗅觉受体

的第一个例子

表明,人类精子
表达一种嗅觉受体

,带有这种受体的精子
会寻找

受体响应的化学物质

——受体的配体。

也就是说,精子
会游向配体。

这具有有趣的含义。

通过嗅出
配体浓度最高的区域,精子是否有助于找到卵子?

我喜欢这个例子,
因为它清楚地

表明嗅觉受体的主要工作
是作为化学传感器,

但根据具体情况,

它会影响你感知气味的方式,

或者精子游动的

方向,结果证明,

种类繁多的其他过程。

嗅觉受体
与肌肉细胞迁移

、帮助肺部感知
和响应吸入的化学物质

以及伤口愈合有关。

类似地,曾经
被认为仅存在于舌头中

的味觉感受器现在已知
在全身的细胞和组织中表达。

更令人惊讶的是

,最近的一项研究发现

,我们眼睛中的光感受器
也在我们的血管中发挥作用。

在我的实验室中,

我们致力于了解
嗅觉受体和味觉受体

在肾脏环境中的作用。

肾脏是
体内平衡的中央控制中心。

对我们

来说,稳态
控制中心是使用化学传感器的合乎逻辑的

地方是有道理的。

我们已经在肾脏中发现了
许多不同的嗅觉和味觉受体

其中一种嗅觉受体

78 已知在对血压调节很重要
的细胞和组织

中表达

当小鼠体内的这种受体被删除时,

它们的血压就会降低。

令人惊讶的是,发现这种受体

对称为
短链脂肪酸的化学

物质有反应,这种化学物质由
肠道中的细菌——

你的肠道微生物群——产生。


由肠道微生物群产生后,

这些化学物质被吸收
到您的血液

中,然后它们可以

嗅觉受体 78 等受体相互作用,

这意味着
肠道微生物群的新陈代谢变化

可能会影响您的血压。

尽管我们已经在肾脏中发现了
许多不同的嗅觉和味觉感受器

但我们才刚刚
开始梳理它们的不同功能

并弄清楚它们各自对哪些化学物质
有反应。

许多其他器官和组织也面临着类似的研究——迄今为止,

只研究了一小部分受体

这是令人兴奋的事情。

它正在彻底改变我们

对五种感官之一的影响范围的理解。

它有
可能改变我们对

人类生理学某些方面的理解。

现在还为时过早,

但我认为我们已经嗅到
了我们所关注的东西的气味。

(笑声)

谢谢。

(掌声)