How to grow a bone Nina Tandon

Can you grow a human bone
outside the human body?

The answer may soon be yes,

but before we can understand
how that’s possible,

we need to look at
how bones grow naturally inside the body.

Most bones start in a growing fetus
as a soft, flexible cartilage.

Bone-forming cells replace the cartilage
with a spongy mineral lattice

made of elements like calcium
and phosphate.

This lattice gets harder,
as osteoblasts,

which are specialized bone-forming cells,

deposit more mineral,
giving bones their strength.

While the lattice itself
is not made of living cells,

networks of blood vessels, nerves
and other living tissues

grow through special channels
and passages.

And over the course of development,

a legion of osteoblasts
reinforce the skeleton

that protects our organs,
allows us to move,

produces blood cells and more.

But this initial building process alone

is not enough to make bones
strong and functional.

If you took a bone built this way,

attached muscles to it,

and tried to use it
to lift a heavy weight,

the bone would probably snap
under the strain.

This doesn’t usually happen to us

because our cells
are constantly reinforcing

and building bone wherever they’re used,

a principle we refer to as Wolff’s Law.

However, bone materials
are a limited resource

and this new, reinforcing bone

can be formed only if
there is enough material present.

Fortunately, osteoblasts, the builders,

have a counterpart
called osteoclasts, the recyclers.

Osteoclasts break down the unneeded
mineral lattice using acids and enzymes

so that osteoblasts can then
add more material.

One of the main reasons astronauts
must exercise constantly in orbit

is due to the lack of skeletal strain
in free fall.

As projected by Wolff’s Law,

that makes osteoclasts more active
than osteoblasts,

resulting in a loss
of bone mass and strength.

When bones do break, your body
has an amazing ability

to reconstruct the injured bone
as if the break had never happened.

Certain situations, like cancer removal,

traumatic accidents,

and genetic defects exceed the body’s
natural ability for repair.

Historical solutions have included
filling in the resulting holes with metal,

animal bones,

or pieces of bone from human donors,

but none of these are optimal
as they can cause infections

or be rejected by the immune system,

and they can’t carry out most
of the functions of healthy bones.

An ideal solution would be to grow a bone
made from the patient’s own cells

that’s customized to
the exact shape of the hole,

and that’s exactly what scientists
are currently trying to do.

Here’s how it works.

First, doctors extract stem cells from
a patient’s fat tissue

and take CT scans to determine
the exact dimensions of the missing bone.

They then model the exact
shape of the hole,

either with 3D printers,

or by carving decellularized cow bones.

Those are the bones where all of the cells
have been stripped away,

leaving only the sponge-like
mineral lattice.

They then add the patient’s stem cells
to this lattice

and place it in a bioreactor,

a device that will simulate all
of the conditions found inside the body.

Temperature, humidity, acidity
and nutrient composition

all need to be just right for
the stem cells to differentiate

into osteoblasts and other cells,

colonize the mineral lattice,

and remodel it with living tissue.

But there’s one thing missing.

Remember Wolff’s Law?

An artificial bone needs
to experience real stress,

or else it will come out weak and brittle,

so the bioreactor constantly pumps
fluids around the bone,

and the pressure tells the osteoblasts
to add bone density.

Put all of this together,
and within three weeks,

the now living bone is ready
to come out of the bioreactor

and to be implanted
into the patient’s body.

While it isn’t yet certain that
this method will work for humans,

lab grown bones have already been
successfully implanted in pigs

and other animals,

and human trials may begin
as early as 2016.

你能在人体外长出人骨
吗?

答案可能很快就会是肯定的,

但在我们了解这
怎么可能之前,

我们需要
看看骨骼是如何在体内自然生长的。

大多数骨骼在成长中的胎儿
中都是柔软、有弹性的软骨。

骨形成细胞用由钙和磷酸盐等元素
制成的海绵状矿物晶格取代了软骨

这种格子变得更硬,
因为成骨

细胞是专门的骨形成细胞,会

沉积更多的矿物质,
从而赋予骨骼强度。

虽然晶格本身
不是由活细胞组成的,但

血管、神经
和其他活组织的网络

通过特殊的通道
和通道生长。

在发育过程中,

大量成骨细胞
强化了

保护我们器官的骨骼,
使我们能够移动,

产生血细胞等等。

但仅靠这个最初的构建过程

还不足以使骨骼变得
强壮和功能强大。

如果你拿一块这样建造的骨头,

将肌肉附着在上面,

并试图用它
来举起重物

,骨头可能会在拉力
下折断。

这通常不会发生在我们身上,

因为我们的细胞

任何使用它们的地方都在不断地增强和构建骨骼,

我们称之为沃尔夫定律的原理。

然而,骨材料
是一种有限的资源

只有当
有足够的材料存在时,才能形成这种新的增强骨。

幸运的是,成骨细胞,建造者,

有一个
叫做破骨细胞的对应物,回收者。

破骨细胞
使用酸和酶分解不需要的矿物晶格,

以便成骨细胞可以
添加更多材料。

宇航员
必须在轨道上不断锻炼的主要原因之一

是由于在自由落体中缺乏骨骼应变

正如沃尔夫定律所预测的那样,

这使得破骨细胞
比成骨细胞更活跃,

从而导致
骨量和强度的损失。

当骨头确实断裂时,你的身体
有一种惊人的能力

来重建受伤的骨头
,就好像断裂从未发生过一样。

某些情况,如癌症切除、

创伤事故

和遗传缺陷超出了身体的
自然修复能力。

历史上的解决方案包括
用金属、

动物骨头或人类捐赠者的骨头碎片填充由此产生的洞,

但这些都不是最佳的,
因为它们会引起感染

或被免疫系统排斥,

而且它们不能执行大多数
健康骨骼的功能。

一个理想的解决方案是培养
由患者自身细胞制成的骨骼,该骨骼

针对孔的确切形状进行定制,

而这正是科学家
们目前正在尝试做的事情。

这是它的工作原理。

首先,医生
从患者的脂肪组织中提取干细胞

并进行 CT 扫描以确定
缺失骨骼的确切尺寸。

然后

他们使用 3D 打印机

或通过雕刻脱细胞牛骨来模拟孔的确切形状。

那些是所有细胞
都被剥离的骨头,

只剩下海绵状的
矿物晶格。

然后,他们将患者的干细胞添加
到这个晶格中

,并将其放入生物反应器中,

该装置将模拟
体内发现的所有条件。

温度、湿度、酸度
和营养成分

都需要恰到好处,才能
使干细胞分化

成成骨细胞和其他细胞,

在矿物晶格中定殖,

并用活组织对其进行改造。

但是缺少一件事。

还记得沃尔夫定律吗?

人造骨
需要承受真正的压力,

否则它会变得脆弱易碎,

因此生物反应器会不断地
在骨骼周围泵送液体

,压力会告诉成骨细胞
增加骨密度。

将所有这些放在一起
,在三周内

,现在的活骨就可以
从生物反应器中出来


植入患者体内。

虽然目前还不确定
这种方法是否适用于人类,但

实验室培育的骨骼已经
成功植入猪

和其他动物体内

,人体试验
最早可能在 2016 年开始。