A light switch for neurons Ed Boyden

your day for a second you woke up felt

fresh air in your face as you walked out

the door

encountered new colleagues and had great

discussions and felt in awe and you

found something new but I bet there’s

something that you didn’t think about

today something so close to home that

you probably don’t think about it very

often at all and that’s what all those

sensations feelings decisions and

actions are mediated by the computer in

your head called your brain now the

brain may not look like much from the

outside a couple pounds of pinkish gray

flesh amorphous but the last 100 years

of neuroscience have allowed us to zoom

in on the brain and to see the intricacy

of what lies are then and they told us

that this brain is an incredibly

complicated circuit made out of hundreds

of billions of cells called neurons now

unlike a human designed computer where

there’s a fairly small number different

parts we know how they work because we

humans design them the brain is made of

thousands of different kinds of cell

maybe tens of thousands they come in

different shapes they’re made out of

different molecules and they project and

connect to different brain regions and

they also change different ways in

different disease states let’s make it

concrete there’s a class of cells fairly

small cell I’m an inhibitory cell that

quiets its neighbors it’s one of the

cells that seem to be atrophied in

disorders like schizophrenia called the

basket stop and this cell is one of the

thousands of kinds of cell that we are

learning about new ones being discovered

every day as just a second example these

parental cells large cells they can span

a cific infraction the brain they’re

excitatory and these are some of the

cells that might be over active and

disorders such as epilepsy every one of

these cells is an incredible electrical

device they receive inputs from

thousands of upstream partners and

compute their own electrical outputs

which then if they pass a certain

threshold will go to thousands of

downstream partners and this process

which takes just you know a millisecond

or so happens thousands of times a

minute and every one of your hundred

billion cells as long as you live and

think and feel so how we’re gonna figure

out what this circuit does ideally we

could go through this circuit and turn

these different kinds of

on and off and see whether we could

figure out which ones contributed to

certain functions and which ones go

wrong in certain pathologies we could

activate cells or to see what powers

they can unleash what they can initiate

and sustain if we can turn them off then

we could try and figure out they’re

necessary for and that’s the story I’m

going to tell you about today and

honestly where we’ve gone through over

the last 11 years through an attempt to

find ways of turning circuits and cells

and parts and pathways of the brain on

and off both to understand the science

and also to confront some of the issues

that face us all as humans now before I

tell you the technology the bad news is

that a significant fraction of us in

this room if we live long enough will

encounter perhaps a brain disorder

already a billion people have had some

kind of brain disorder incapacitate stun

and the numbers don’t do it justice

though these disorders schizophrenia

Alzheimer’s depression addiction they

not only steal away our time to live

they change who we are they take our

identity and change our emotions and

change who we are as people now in the

20th century there was some hope that

was generated through the development of

pharmaceuticals for treating brain

disorders and while many drugs have been

developed that can alleviate symptoms of

brain disorders practically none of them

can be considered to be cured and in

part that’s because if you think about

it we’re bathing the brain in a chemical

this elaborate circuit made out of

thousand different kinds of cell is

being bathed in a substance that’s also

why perhaps most of the drugs is not all

in the market can present some kind of

serious side effect to now some people

have gotten some solace from electrical

stimulators that are implant in the

brain and for Parkinson’s disease

cochlear implants these have indeed been

able to bring some kind of remedy to

people with certain kinds of disorder

but electricity also will go in all

directions the path of least resistance

which is kind of where that phrase in

part comes from

and it also will affect normal circuits

as well as the abnormal ones that you

want to fix so again

weird sent back to the idea of ultra

precise control could we dial in

information precisely where we want it

to go so when I started in neuroscience

well

years ago I had trained it as an

electrical engineer and a physicist and

the first thing I thought about was well

if these neurons or electrical devices

all we need to do is to find some way of

driving those electrical changes at a

distance if we could turn on electricity

in one cell but not its neighbors that

would give us the toll we need to

activate and shut down these different

cells here what they do and have the

contribute to the networks in which

they’re embedded and also it allow us to

have the ultra precise control we need

in order to fix the circuit computations

that have gone awry now how are gonna do

that well there many molecules that

exist in nature

which are able to convert light and

electricity you can think of them as

little proteins that are like solar

cells if we install these molecules in

neurons somehow then these neurons would

become electrically drivable with light

and their neighbors which don’t have

this molecule would not there’s one

other magic trick you need to make this

all happen and that’s the only got light

into the brain and to do that the brain

doesn’t feel pain you can put taking

advantage of all the effort that’s gone

into the internet and telecommunications

and so on optical fibers connected to

lasers that you can use to activate in a

neural models for example in preclinical

studies these neurons and to see what

they do so how do we do this we’re on

2004 in collaboration with beard

Nagaland Carl dice Roth this vision came

to fruition there’s a certain alga that

swims in the wild and it needs to

navigate towards light in order to

photosynthesize optimally and it senses

light with a little eye spot which works

not unlike how our eye works in its

membrane or the boundary it contains

little proteins that indeed can convert

light into electricity so these

molecules are called channelrhodopsins

and each of these proteins acts just

like that solar cell that I told you

about when blue light hits it it opens

have a little hole and allows charged

particles to enter the eye spot and that

allows this eye spot to have an

electrical signal just like a solar cell

charging up a battery so what we need to

do is to take these molecules and

somehow install them in neurons and

because it’s a protein it’s encoded for

in the DNA of this organism so all I got

to do is take that DNA put into a gene

therapy vector like a virus and put it

into neurons so it turned out that this

was a very productive try

in gene therapy and lots of viruses are

coming along so this turn out to be

fairly simple to do and early in the

morning one day in the summer of 2004 we

gave it a try and it worked on the first

try

you take this DNA and you put into the

neuron the neuron uses its natural

protein making machinery to fabricate

these little light-sensitive proteins

and install them all over the cell like

putting solar panels on a roof and the

next thing you know you have a neuron

which can be activated with light so

this is very powerful one of the tricks

you have to do is to figure out how to

deliver these genes to the cells that

you want and not all the other neighbors

right and you can do that you can tweak

the viruses so they hit just some cells

and not others

and there’s other genetic tricks you can

play in order to get light activated

cells this field has now come to be

known as optogenetics and this is one

example of the kind of thing you can do

you can take a complex network use one

these viruses deliver the gene just to

one kind of cell in this dense Network

and then when you shine light on the

entire network just that cell type will

be activated so for example that sort of

cancer that basket saw I told you about

earlier the one that’s after feeding

schizophrenia and the one that is

inhibitory if we can deliver that gene

to these cells and they’re not being

altered by the expression of the gene of

course and then flash blue light over

the entire brain Network just these

cells are going to be driven and when

the light turns off these cells go back

to normal so there don’t seem to be

adverse events that I only can use this

a study what these cells do what their

power is in computing in the brain but

you can also use this to try and figure

out well maybe we could jazz up the

activity these cells have indeed their

atrophied now I don’t tell you a couple

short stories about how we’re using this

both of the scientific clinical and

preclinical levels one of the questions

that we’ve confronted is what are the

signals in the brain that mediate the

sensation of reward because it could

find those those would be some of the

signals that can drive learning right

the brain will do more whatever got that

reward and also these are signals that

go awry in disorders such as addiction

so if we could figure out what cells

they are we can maybe find new targets

for which drugs can be designed or

screened against or maybe places where

electrodes could be put in for people

who have very severe disability so to do

that we even with a very simple paradigm

in collaboration with the Fiorello group

where one side of this little box if the

animal goes there they all gets a pulse

of light and we’re to make different

cells in the brain sensitive

so if these cells can mediate reward the

animal should go there more and more and

so that’s what happens this animals

gonna go to the right-hand side

and poke his nose there and gets a flash

of blue light every times it does that

and he’ll do that hundreds and hundreds

of times these are the dopamine neurons

which some of you may have heard about

into some of the pleasure centers in the

brain now we’ve shown that a brief

activation of these is enough indeed to

drive learning now we can generalize the

idea instead of one point in the brain

we can devise devices that span the

brain that can deliver light into

three-dimensional patterns arrays of

optical fibers each couple to its own

independent miniature light source and

then we can try to do things in vivo

that have only been done to date in a

dish like high-throughput screening

throughout the entire brain for the

signals that can cause certain things to

happen or that could be good clinical

targets for treating brain disorders and

one sterile I talked about is how can we

find targets for treating post-traumatic

stress disorder a form of uncontrolled

anxiety and fear and one of the things

that we did was to adopt a very

classical model of fear this goes back

you know back to the Pavlovian days and

it’s called Pavlovian fear conditioning

where a tone ends the brief shock shock

isn’t painful but it’s little annoying

and over time in this case the mouse

which is a good animal model commonly

used in such experiments the animal

learns to fear the tone the animal

reacts by freezing sort like a deer in

headlights now the question is what

targets the brain can we find that allow

us to overcome this fear so what we do

is you play that tone again after it’s

been associated with fear but we

activate targets the brain different

ones using that optical fiber a I told

you about in the previous slide in order

to try and ferret which targets can

cause the brain to overcome that memory

of fear and so this brief video shows

you one of these targets that were

working on now this is an area in the

prefrontal cortex a region where we can

use cognition to try and overcome

adversity of emotional states and then I

was going to hear a tone and the flash

of light occurred there there’s no audio

in this but you can see the animals

freezing this tone used to mean bad news

and there’s a little clock in the lower

left hand corner so you can see that

this animal is about two minutes into

this and now this next clip is just

eight minutes later and the same tones

gonna play in the lights gonna flash

again okay there it goes right now and

now you can see just ten minutes into

the experiment that we’ve equipped the

brain by photoactive in this area to

overcome the

rushon of the sphere memory now over the

last couple years we’ve gone back to the

Tree of Life because we wanted to find

ways to turn circuits in the brain off

if we could do that this could be

extremely powerful if you can delete

cells just for a few milliseconds of

seconds you can figure out what

necessary role they play in the circuits

in which they’re embedded and we’ve now

surveyed organisms from all over the

Tree of Life every kingdom of life

except for animals we seek slept one

differently and we found all sorts of

molecules they’re called halorhodopsin

dark gray Dobson to respond to green and

yellow light and they do the opposite

thing of the molecule I told you about

before the blue light activator general

Dobson let’s give an example of where we

think this is going to go consider for

example a condition like epilepsy where

the brain is overactive now if drugs

fail an epileptic treatment one of the

strategies is to remove part of the

brain that’s obviously irreversible and

there could be side effects what if we

could just turn off that brain for the

brief amount of time until the seizure

dies away and cause the brain to be

restored res initial state sort like a

dynamical system that’s being coaxed

down into a stable state this animation

is tries to explain this concept where

we made these cells sensitive to being

turned off with light and we beam light

in and just for the time it takes to

shut down a seizure we’re hoping to be

able to turn it off and so we don’t have

data to show you in this front but we’re

very excited about this now I want to

close on one story which we think is

another possibility which is that maybe

these molecules if you can do ultra

precise control to be used in the brain

itself to make a new kind of prosthetic

an optical prosthetic I already told you

that electrical stimulators are not in

common seventy-five thousand people have

Parkinson’s deep brain stimulators

implanted maybe a hundred thousand

people have cochlear implants which will

allow them to hear there’s another thing

which it’s got to get these genes into

cells and new hope and gene therapy has

been developed because there are viruses

like the add no source and virus which

probably most of us around this room

have and it doesn’t have any symptoms

which have been used in hundreds of

patients

delivered genes into the brain of the

body and so far there have not been

serious adverse events associated with

the virus there’s one last alpha in the

room the proteins themselves which come

from algae and bacteria and funguses and

all over the Tree of Life most of us

don’t have funguses or algae in our

brain so what is their brain gonna do if

we put that in how this cell is gonna

tolerate it

well the immune system react and it’s

early days these are not been done in

humans yet but we’re in a variety of

studies

to try and examine this and so far we

haven’t seen overt reactions of any

severity to these molecules or to these

the illumination of the brain with light

so it’s early days yet front we’re

excited about it I want to close in one

story which we think could potentially

be a clinical application now there many

forms of blindness where their

photoreceptors our light sensors that

are in the back of our eye are gone and

the retina of course is a complex

structure let’s zoom in on it here so

you can see it in more detail the

photoreceptor cells are shown here at

the top and then the signals that are

detected by the photoreceptors are

transformed through various computations

until finally that layer cells at the

bottom the ganglion cells relay the

information to the brain where we see

that as perception in many forms of

blindness they recognise pigmentosa or

macular degeneration the photoreceptor

cells have atrophied or been destroyed

now how could you repair this it’s not

even clear that a drug could cause this

to be restored because there’s nothing

for the drug to bind to other hand like

you still get into the eye right the eye

is still transparent and you can get

light in so what if we could just take

these general drops and other molecules

and install them on some of these other

spared cells and convert them into

little cameras and because there’s so

many of these cells in the eye but

initially it could be very

high-resolution cameras so this is some

work that we’re doing that’s being both

led by one of our collaborators Alan hor

saga at USC and being sought to be

commercialized by a startup company your

stereo science which is funded by the

NIH and what you see here is a mouse

trying to solve a maze as the six arm

maze and as a bit of water in the maze

to motivate the mouse to move where

he’ll just sit there and the goal of

course of this maze is to get out of the

water and go to a little platform that’s

under the ellipse top port now mice are

smart this mouse solve the maze

eventually but he does a brute force

search he’s swimming down every Avenue

until he finally gets to the platform so

he’s not using vision to do it these

different mice are different mutations

that recapitulate different kinds of

blindness that that affect humans and

sort of being careful and trying to look

at these different models so we come

with a generalized approach so how are

gonna solve this well we’re gonna do

exactly like line the previous slide

we’re gonna take these blue light photo

sensors and install them onto a layer of

cells in the middle of the retina in the

back of the eye and convert them into a

camera just like installing solar cells

all over those neurons

make them light-sensitive flightless

converts electricity on them so this

mouse was blind a couple weeks before

this experiment and received one dose of

this photosensitive molecule and a virus

and now you can see the animal can

indeed avoid walls and go to this little

platform and make cognitive use of its

eyes again and to point out the power of

this these animals are able to get to

that platform just as fast as animals

have seen their entire life so this

preclinical study I think bodes hope for

the kinds of things we’re hoping to do

in the future to close I want to point

out that we’re also exploring new

business models for this new field of

neuro technology we’re developing these

tools but we share them freely with

hundreds of groups all over the world so

people can study and try to treat

different disorders and our hope is that

by figuring out brain circuits at a

level of abstraction that lets us repair

them and engineer them we can take some

of these intractable disorders that I

told you about earlier practically none

of which are cured and the 21st century

make them history thank you

so some of the stuff is a little dense

but the implications of being able to

control seizures or epilepsy with light

instead of drugs and being able to

target those specifically is the first

step the second thing that I think I

heard you say is you can now control the

brain in two colors mm-hmm like an

on/off switch that’s right which makes

every impulse going through the brain a

binary code right yeah so with blue

light we can drive information in this

form of a one and by turning things off

it’s more or less a zero so our hope is

to eventually build brain coprocessors

that work with the brain so we can

augment functions in people with

disabilities and in theory that means

that as a mouse feels smells hears

touches you can model it out as a string

of ones and zeros sure yeah we’re hoping

that use this as a way of testing what

neural codes can drive certain behaviors

and certain thoughts and certain

feelings I’ve used that to understand

more about the brain does that mean that

someday you could download memories and

maybe upload them well it’s something

we’re starting to work on very hard yeah

we’re we’re now working on some work

where we’re trying to tile the brain

with recording elements to so we can

record information and then drive

information back in serve computing what

the brain needs in order to augment its

information processing that might change

a couple of things thank you thank you

你的一天有那么一秒钟,

当你走出门时,你会感到新鲜的空气在你的脸上

遇到了新的同事,进行了热烈的

讨论,感到敬畏,你

发现了一些新的东西,但我敢打赌,

有些事情是你今天没有想到的

离家如此之近,以至于

您可能根本不会经常考虑它

,这就是所有这些

感觉,感觉,决定和

行动都是由您大脑中称为大脑的计算机介导的,

现在

大脑从外部看起来可能并不

像 几磅粉灰色的

肉是无定形的,但过去 100 年

的神经科学让我们能够

放大大脑并看到

当时谎言的复杂性,他们告诉我们

,这个大脑是一个非常

复杂的电路,由数百

个 数十亿个称为神经元的细胞现在

不像人类设计的计算机,

我们知道它们是如何工作的,因为我们知道它们是如何工作的,因为

大脑是由人类设计的 f

数以千计不同种类的细胞

可能数以万计 它们以

不同的形状出现 它们由

不同的分子组成 它们投射并

连接到不同的大脑区域

它们还在

不同的疾病状态下以不同的方式改变 让我们把它

具体化 有一类 相当

小的细胞 我是一个抑制性细胞,

它可以让它的邻居安静下来 它

是似乎在

精神分裂症等疾病中萎缩的细胞之一,称为

篮子停止,这个细胞

是我们正在了解的数千种细胞之一

每天都会发现新的细胞,这只是第二个例子 这些

亲代细胞 大细胞 它们可以

跨越大脑 它们是

兴奋性的,这些是

一些可能过度活跃的细胞和

癫痫等疾病

这些细胞中的每一个 是一种令人难以置信的电气

设备,它们接收来自

数千个上游合作伙伴的输入并

计算自己的电气输出

,然后如果他们 超过一定的

门槛将进入成千上万的

下游合作伙伴,这个过程

只需要你知道一毫秒

左右,每分钟发生数千次

,只要你生活、

思考和感受,每一个千亿细胞都会发生,所以我们如何' 重新

弄清楚这个电路在理想情况下做了什么我们

可以通过这个电路并打开和关闭

这些不同类型的

开关,看看我们是否可以

找出哪些对

某些功能有贡献,哪些

在某些病理中出了问题,我们可以

激活细胞或 看看

他们可以释放什么力量

,如果我们可以关闭它们,他们可以启动和维持什么,然后

我们可以尝试找出它们是

必要的,这就是我

今天要告诉你的故事,

老实说我们在哪里

在过去的 11 年中,通过尝试

找到打开和关闭大脑的电路和细胞

以及部分和通路的方法,

以了解科学

并面对某些问题

在我告诉你这项技术之前,我们作为人类现在面临的问题中,

坏消息是

如果我们活得足够长,我们在这个房间里的很大一部分人

可能会遇到脑部疾病,

已经有 10 亿人患有

某种疾病 脑部疾病使昏迷

和数字不公平,

尽管这些疾病精神分裂症

阿尔茨海默氏症抑郁症成瘾他们

不仅偷走了我们的生活时间

他们改变了我们是谁他们夺走了我们的

身份并改变了我们的情绪并

改变了我们现在的人 在

20 世纪,

通过开发

治疗脑部

疾病的药物产生了一些希望,虽然已经

开发出许多可以缓解

脑部疾病症状的药物,但实际上没有一种

可以被认为可以治愈,

部分原因是如果 你想想看

,我们正在用一种化学物质浸泡大脑,

这个由

数千种不同细胞组成的复杂电路

是 沐浴在一种物质中,这也是

为什么市场上并非全部药物

可能会产生某种

严重副作用的原因,现在有些人

已经从

植入

大脑的电刺激器和帕金森病

耳蜗植入物中获得了一些安慰 这些确实

能够为患有某些疾病的人带来某种补救措施,

但电也将向各个

方向传播阻力最小的路径,

这是该短语的

部分来源

,它也会影响正常电路,

因为 以及你想要修复的异常问题,

如此

奇怪又回到了超精确控制的想法,

我们能否将

信息准确地拨入我们希望它

去的地方,所以当我多年前开始从事神经科学时,

我已经将它训练为

电子 工程师和物理学家

,我首先想到的是,

如果这些神经元或电子

设备我们需要做的就是找到某种方式来

驱动它们

如果我们可以打开

一个单元而不是它的邻居的电,那么远距离的电气变化

会给我们带来我们需要的费用来

激活和关闭这些不同的

单元,它们在做什么并对它们所在

的网络做出贡献

嵌入式,它还允许我们

拥有我们需要的超精确控制

,以修复

现在出错的电路计算如何

做得很好

,自然界

中存在许多能够转换光和

电的分子,你可以想象 如果我们以某种方式将这些分子安装在神经元中,它们中的

一些就像太阳能电池一样的小蛋白质,

那么这些神经元将

变得可以用光进行电驱动,

而它们的邻居没有

这种分子就不会有

另一个魔法你需要做这

一切 发生,这是唯一

进入大脑的光,要做到这一点,大脑

不会感到疼痛,你可以

利用所有的努力

互联网和电信

等 连接到

激光器的光纤,您可以使用这些激光器在

神经模型中激活,例如在临床前

研究中这些神经元并查看

它们的作用 我们如何做到这一点 我们在

2004 年与 beard

Nagaland 合作 Carl dice Roth 这一愿景

实现了 有一种藻类

在野外游泳,它需要

向光导航以进行

最佳光合作用,它

通过一个小眼点感知光线,这

与我们的眼睛在其

膜中的工作方式或 它的边界包含

一些确实可以将

光转化为电的蛋白质,因此这些

分子被称为通道视紫红

质,这些蛋白质中的每一种都

像我告诉你的太阳能电池一样,

当蓝光照射到它时,它会

打开一个小孔并允许带电

粒子 进入眼点,

让这个眼点有一个

电信号,就像太阳能电池

给电池充电一样,所以我们n 需要

做的是获取这些分子并

以某种方式将它们安装在神经元中,

因为它是一种蛋白质,它被编码

在这种生物体的 DNA 中,所以我

要做的就是将 DNA

像病毒一样放入基因治疗载体中并放入

进入神经元,所以结果证明这

是基因治疗中的一次非常有效的尝试

,并且出现了许多病毒

,所以这变得

相当简单

,2004 年夏天的一天清晨,我们

试了一下 它在第一次

尝试中

发挥了作用,您将这种 DNA 放入神经元中,神经元使用其天然蛋白质制造机器来制造

这些小的光敏蛋白质

,并将它们安装在整个细胞中,就像

将太阳能电池板放在屋顶上,

然后 你知道你有一个

可以用光激活的神经元,所以

这是非常强大的技巧之一,

你要做的就是弄清楚如何

将这些基因传递给你想要的细胞,

而不是所有其他邻居。

你可以这样做,你可以

调整病毒,使它们只攻击一些细胞而不攻击其他细胞

,你可以使用其他遗传技巧

来获得光激活

细胞,这个领域现在被

称为光遗传学,这是一个

例子 你可以做的事情

你可以利用一个复杂的网络 使用一个

这些病毒将基因传递给

这个密集网络中的一种细胞

,然后当你照亮

整个网络时,这种细胞类型就会

被激活,例如

篮子看到的那种癌症 我之前告诉过你

一种是在喂食

精神分裂症后 一种是

抑制性的

整个大脑网络上的蓝光只有这些

细胞将被驱动,

当灯关闭时,这些细胞会

恢复正常,所以似乎没有

不良事件,我只能使用

这个螺柱 y 这些细胞的作用是什么它们

在大脑中的计算能力是什么,但

你也可以用它来尝试

弄清楚也许我们可以使

这些细胞确实

萎缩的活动变得活跃我不告诉你几个

小故事 关于我们如何

在科学的临床和

临床前水平上使用

这个我们面临的问题

之一是大脑中调节

奖励感觉的信号是什么,因为它可以

找到那些将是一些

信号的信号 这可以推动正确

的学习,无论获得什么奖励,大脑都会做更多事情,

而且这些是

在成瘾等疾病中出错的信号,

所以如果我们能够弄清楚

它们是什么细胞,我们也许可以找到

可以设计药物的新目标或

筛选或

可能为

严重残疾的人放置电极的地方,因此

我们甚至通过与 Fiorello 小组合作的非常简单的范例来做到这一点,

其中一个 si 如果

动物去那里,他们都会得到一个

光脉冲,我们要让

大脑中的不同细胞变得敏感,

所以如果这些细胞可以调节奖励,

动物应该越来越多地去那里

,这就是发生的事情 动物

会走到右手边

,戳他的鼻子,

每次它都会发出蓝光

,他会这样做

成百上千次这些是

你们中的一些人可能听说过的多巴胺神经元

进入大脑中的一些快乐中心

现在我们已经证明,短暂

激活这些快乐中心确实足以

推动学习 现在我们可以概括这个

想法而不是大脑中的一个点

我们可以设计跨越

大脑的设备,可以提供 光

变成 3D 模式的光纤阵列,

每一个都耦合到自己

独立的微型光源,

然后我们可以尝试在体内

做一些迄今为止只能在盘子中完成的事情,

比如高通量筛选

在整个大脑中寻找

可能导致某些事情

发生或可能成为

治疗脑部疾病的良好临床目标的信号,而

我谈到的一个无用的问题是我们如何

找到治疗创伤后

应激障碍的目标,这是一种不受控制的

焦虑和 恐惧

,我们所做的其中一件事是采用一种非常

经典的恐惧模型,这

可以追溯到巴甫洛夫时代,

它被称为巴甫洛夫恐惧条件反射式,

其中一个音调结束了短暂的休克

并不痛苦,但有点烦人

随着时间的推移,在这种情况下,

老鼠是这种实验中常用的一种很好的动物模型

,动物

学会害怕动物的

反应,就像头灯下的鹿一样,动物的反应是冻结

现在的问题是

我们可以找到大脑的什么目标来允许

我们要克服这种恐惧,所以我们要做的

是在它与恐惧相关联后再次播放该音调

,但我们

使用该操作激活大脑不同的目标 我

在上一张幻灯片中告诉过你

的 tical 纤维,以便尝试找出哪些目标可以

使大脑克服

恐惧的记忆,所以这个简短的视频向你展示了

其中一个正在研究的目标,

这是一个领域

前额叶皮层 一个我们可以

使用认知来尝试克服

情绪状态逆境的区域,然后

我会听到一个音调并且

闪光发生在那里没有

音频但是你可以看到动物

冻结这个音调过去 意味着坏消息

,左下角有一个小时钟,

所以你可以看到

这只动物大约两分钟

后,现在下一个剪辑只是

八分钟后,同样的音调

会在灯光下

再次闪烁,好吧 现在就到这里了,

现在你可以看到实验只进行了十分钟

,我们

在这个区域通过光活性装备了大脑,以

克服

过去几年中球体记忆的冲击

w 我们回到

生命之树,因为我们想

找到关闭大脑回路的方法,

如果我们能做到的话,这将

非常强大,如果你能

在几毫秒的

时间内删除细胞,你就能弄清楚是什么

它们在嵌入它们的电路中发挥着必要的作用,我们现在已经

调查了生命之树各处的有机体,

除了我们寻找的动物之外,每个生命王国都有不同的睡眠

方式,我们发现了各种各样的

分子,它们被称为 halorhodopsin

深灰色 Dobson 对绿光和黄光做出反应

,它们的作用与

在蓝光激活剂一般

Dobson 之前告诉过

你的分子相反

如果药物

对癫痫治疗失败,现在大脑过度活跃的癫痫症

策略之一是切除

明显不可逆的大脑部分,并且

可能会产生副作用 如果我们

可以在短时间内关闭大脑,

直到癫痫发作

消失并导致大脑

恢复 res 初始状态类似于

被哄骗到稳定状态的动力系统这个

动画试图解释这个概念,

我们 使这些细胞对被

光关闭很敏感,我们将光线照射

进来,就在关闭癫痫发作所需的时间,

我们希望

能够将其关闭,因此我们没有

数据可以显示 在这方面,但我们对此感到

非常兴奋,现在我想

结束一个故事,我们

认为这是另一种可能性,

如果你可以进行超

精确控制,这些分子可能会被用于大脑

本身,从而制造出一种新的 假肢

光学假肢 我已经告诉过

你 电刺激器并不

常见 七万五千人植入了

帕金森深部脑刺激器

也许十万人植入了

人工

耳蜗 他们听说还有另一件事

,就是要把这些基因带入

细胞,新的希望和基因疗法

已经开发出来,因为有病毒,

比如添加无源病毒和病毒,

可能我们这个房间里的大多数人

都有,但没有 是否有任何

已在数百名患者中使用过的

症状

将基因传递到身体的大脑中

,到目前为止还没有

与病毒相关的严重不良事件

房间里有最后一个阿尔法蛋白质本身

来自藻类和细菌和 真菌和

整个生命之树 我们大多数人的

大脑中没有真菌或藻类,所以如果

我们把它们放在这个细胞如何

很好地耐受它,他们的大脑会做什么免疫系统会做出反应,现在还处于

早期阶段 尚未在人类身上进行过,

但我们正在进行各种

研究

以尝试检查这一点,到目前为止,我们

还没有看到

对这些分子或对这些分子的任何严重的明显反应。

大脑有光,

所以现在还为时尚早,但我们对此感到

兴奋。我想结束一个

故事,我们认为这

可能是临床应用

眼睛不见了

,视网膜当然是一个复杂的

结构,让我们在这里放大它,

以便更详细地看到它,

感光细胞显示

在顶部,然后通过各种计算转换

感光细胞检测到的信号

直到最后那层细胞在

底部神经节细胞将

信息传递给大脑,在那里我们看到

,作为多种形式的

失明的感知,它们识别色素变性或

黄斑变性,感光

细胞已经萎缩或被破坏

现在你怎么能修复它它不是

甚至清楚药物可能会导致

这种情况恢复,

因为药物不会像你一样与另一只手

结合 t 进入眼睛 右眼 眼睛

仍然是透明的 你可以得到

光 如果我们可以把

这些普通的水滴和其他

分子安装在其他一些

备用的细胞上 把它们变成

小相机 因为有这么

多 这些细胞在眼睛中,但

最初它可能是非常

高分辨率的相机,所以这是

我们正在做的一些工作,

由我们在南加州大学的一位合作者 Alan hor saga 领导,

并被一家初创公司寻求商业化 你的

立体科学由

NIH 资助,你在这里看到的是一只老鼠

试图解决一个六臂

迷宫和迷宫中的一点水,

以激励老鼠移动到

他会坐在那里的地方,

这个迷宫的目标当然是离开

水去一个

位于椭圆顶部端口下方的小平台现在老鼠很

聪明这只老鼠最终解决了迷宫

但他做了一个蛮力

搜索他在每个大道上

游泳 直到他最终到达平台,所以

他没有使用视觉来做这些

不同的老鼠是不同的突变

,它们概括

了影响人类的不同类型的失明,并且

有点小心并试图

查看这些不同的模型,所以我们来

了一个广义的 方法 那么如何

很好地解决这个问题 我们将

像上一张幻灯片一样进行操作

我们将使用这些蓝光光电

传感器并将它们安装到眼睛后部

视网膜中间的一层细胞

上 将它们转换成

照相机,就像

在这些神经元上安装太阳能电池一样

使它们具有光敏性 不能飞行

将电能转换到它们身上 所以这只

老鼠在实验前几周是失明的,

并且接受了一剂

这种光敏分子和

病毒 现在你可以 看到动物

确实可以避开墙壁,走到这个小

平台上,再次使用它的眼睛进行认知,

并指出

这些动物的力量 能够

像动物一生中看到的一样快地到达那个平台,

所以

我认为这项临床前研究预示

着我们希望在未来完成的那些事情

我想

指出我们正在 我们还在

为这个神经技术的新领域探索新的商业模式,

我们正在开发这些

工具,但我们与

世界各地的数百个团体免费分享它们,这样

人们就可以研究和尝试治疗

不同的疾病,我们希望

通过弄清楚大脑

抽象级别的电路可以让我们修复

它们并设计它们我们可以处理一些

早些时候告诉过你的顽固性疾病实际上

没有一个被治愈并且21世纪

使它们成为历史谢谢

所以有些东西是 有点密集,

但能够用光而不是药物来

控制癫痫发作或癫痫

并能够

专门针对那些是

第一步我想我听到的第二

件事 你说你现在可以

用两种颜色来控制大脑,嗯,嗯,就像一个

开/关开关,这是对的,这使得

通过大脑的每一个冲动都是一个

二进制代码,是的,所以有了蓝光,

我们可以以这种形式驱动信息。

通过关闭

它,它或多或少是零,所以我们

希望最终建立

与大脑一起工作的大脑协处理器,这样我们就可以

增强

残疾人的功能,从理论上讲,这

意味着当老鼠感觉到气味听到

触摸时,你可以建模 它是一串

1 和 0 肯定是的,我们

希望用它来测试什么

神经代码可以驱动某些行为

、某些想法和某些

感觉 我用它来了解

更多关于大脑的信息是否意味着

有一天你可以下载记忆,

也许可以很好地上传它们这是

我们开始非常努力的工作

是的,我们现在正在做一些工作

,我们试图

用记录元素来平铺大脑 o 这样我们就可以

记录信息,然后将

信息驱动回服务计算

大脑需要什么,以增强其

信息处理能力,这可能会

改变一些事情,谢谢谢谢