A map of the brain Allan Jones

humans have long held a fascination for

the human brain we charted we’ve

described it we’ve drawn it we’ve mapped

it now just like the physical maps of

our world that have been highly

influenced by technology think Google

Maps think GPS the same thing is

happening for brain mapping true

transformation so let’s take a look at

the brain most people when they first

look at a fresh human brain is it

doesn’t look like what you’re typically

looking at when someone shows you a

brain typically what you’re looking at

is a fixed brain it’s gray and this

outer layer this is the vasculature

which is incredible around the human

brain this is the blood vessels 20% of

the oxygen coming from your lungs 20% of

the blood pumped from your heart is

servicing this one organ that’s

basically if you hold two fifths

together it’s just slightly larger than

the two fists scientists sort of in the

end of the 20th century learned that

they could track blood flow to map

non-invasively where activity was going

on in the human brain so for example

they can see in the back part of the

brain which is just turning around there

there’s the cerebellum that’s keeping

you upright right now it’s keeping me

standing it’s involved in coordinated

movement on the side here this is the

temporal cortex this is the area where

primary auditory processing so you’re

hearing my words you’re sending it up

into higher language processing centers

towards the front of the brain is the

place in which all of the dis sort of

more complex thought decision-making is

the last two mature sort of a late

adulthood this is where all your

decision-making processes are going on

it’s the place where you were deciding

right now you probably aren’t going to

order the steak for dinner so if you

take a deeper look at the brain one of

the things if you look at it in

cross-section what you can see is that

you can’t really see a whole lot of

structure there but there’s actually a

lot of structure there it’s cells and

it’s wires all wired together so about a

hundred years ago some scientists

invented its

that would stain cells and that shown

here in the very light blue you can see

areas where neuronal cell bodies are

being stained and what you can see is

this very non-uniform you see a lot more

structure there’s the outer part of that

brain are the is the neocortex it’s one

sort of continuous processing unit if

you will but you could also see things

underneath there as well and all of

these blank areas are the areas in which

the wires are running through they’re

probably less cell dense so there’s

about 86 billion neurons in our brain

and as you can see they’re very non

uniformly distributed and how they’re

distributed really contributes to their

underlying function and of course as I

mentioned before since we can now start

to map brain function we can start to

tie these into the individual cells so

let’s take a deeper look let’s look at

neurons so as I mentioned there are 86

billion neurons there are also these

smaller cells as you’ll see these are

support cells astrocytes glia and the

nerves themselves are the ones who are

receiving input they’re storing it

they’re processing it each neuron is

connected via synapses to up to 10,000

other neurons in your brain and each

neuron itself is largely unique then

unique character of both individual

neurons and neurons within a collection

of the brain are driven by fundamental

properties of their underlying

biochemistry these are proteins they’re

proteins that are controlling things

like ion channel movement they’re

controlling who nervous system cells

partner up with and they’re controlling

basically everything that the nervous

system has to do so if we zoom in to

even deeper level all of those proteins

are encoded by our genomes we each have

23 pairs of chromosomes we get one from

mom one from dad and on these

chromosomes are roughly 25,000 genes

they’re encoded in the DNA and the

nature of a given cell driving its

underlying biochemistry is dictated by

which of these 25,000 genes are turned

on and at what level they’re turned on

and so our project is seeking to look at

this readout understanding which of

these 25,000 genes is turn

so in order to undertake such a project

we obviously need brains so we sent our

lab technician out we were seeking

normal human brains what we actually

start with is a medical examiner’s

office this is a place where the dead

are brought in we are seeking normal

human brains there’s a lot of criteria

by which we’re selecting these brains we

want to make sure that we have normal

human between the ages of 20 to 60 they

died somewhat natural death with no

injury to the brain no history of

psychiatric disease no drugs on board we

do a toxicology workup and we we’re very

careful about the brains that we do take

we’re also selecting for brains in which

we can get the tissue we can get consent

to take the tissue within 24 hours of

time of death because what we’re trying

to measure the RNA which is the readout

from our genes is a very labile and so

so we have to move very quickly one side

note on the collection of brains because

of the way that we collect and because

we’re requiring consent we actually have

a lot more male brains than female

brains males are much more likely to die

accidental death in the prime of their

life and men are much more likely to

have their significant other spouse give

consent than the other way around so the

first thing that we do at the site of

collection is we collect what’s called

an mr this is magnetic resonance imaging

MRI it’s a standard template by which

we’re going to hang the rest of this

data so we collect this mr and you can

think of this as our satellite view for

our map the next thing we do is we

collect what’s called the diffuse and

tensor imaging this maps the large

cabling in the brain and again you can

think of this is almost mapping our

interstate highways if you will the

brain is removed from the skull and then

it sliced into 1 centimeter slices and

those are frozen solid and they’re

shipped to Seattle and in Seattle we

take these this is a whole human

hemisphere and we put them into it’s

basically a glorified meat slicer

there’s a blade here that’s going to cut

across this section of the tissue and

transfer it to a microscope slide we’re

going to then apply one of those stains

to it and we scan it and then what we

get is our first

rapping so this is where our experts

come in and they make basic anatomica

sign mminton siddur this state

boundaries if you wear those pretty

broad outlines from this we’re able to

then fragment that brain into further

pieces which then we can put on a

smaller cryostat and this is a showing

this here is frozen tissue and it’s

being cut this is 20 microns thin so

this is about a baby hairs with remember

it’s frozen and so you can see here

old-fashioned technology of a paintbrush

being applied would take a microscope

slide and we very carefully melt onto

this slide this will then go into a

robot that’s going to apply one of those

stains to it okay and our anatomist are

going to go in and take a deeper look at

this so again this is what they can see

under the microscope you can see

collections and configurations of large

and small cells and clusters and various

places and from their expertise they

understand where to make these

assignments and they can make basically

what’s a reference outlets this is a

more detailed map our scientists then

use this to go back to another piece of

that tissue and do what’s called laser

scanning microdissection so the

technician takes the instructions they

scribe along a place there and then the

laser actually cuts you can see the blue

dot there cutting and that tissue falls

off you can see on the microscope slide

here that’s what’s happening in real

time there’s a container underneath

that’s collecting that tissue we take

that tissue we purify the RNA out of it

using some basic technology and then we

put a fluorescent tag on it

we take that tagged material and we put

it on to something called a microarray

now this may look like a bunch of dots

to you but each one of these individual

dots is actually a unique piece of the

human genome that we spotted down on

glass this has roughly 60,000 elements

on it so we repeatedly measure various

genes of the 25,000 genes in the genome

and when we take a sample and we

hybridize it to it we get a unique

fingerprint if you will

quantitatively of what genes are turned

on in that sample now we do this over

and over again this process for any

given brain were taking over a thousand

samples for each brain this area shown

here is an area called the hippocampus

it’s a

than learning and memory and it

contributes to about 70 samples of those

thousand samples so each sample gives us

about fifty thousand data points with

repeat measurements a thousand samples

so roughly we have 50 million data

points for a given human brain we’ve

done right now to human brains worth of

data we’ve put all of that together into

one thing and I’ll show you what that

synthesis looks like basically a large

data set of information that’s all

freely available to any scientist around

the world they don’t even have to log in

to come use this pool - data find

interesting things out with us so here’s

the modalities that we put together

you’ll start to recognize these things

from what we’ve collected before here’s

the M R it provides the framework

there’s an operator side on the right

that allows you to turn it allows you to

zoom in it allows you to highlight

individual structures but most

importantly we’re now mapping into this

anatomic framework which is a common

framework for people to understand where

our genes are turned on so the red

levels are where a gene is turned on to

a great degree Green is this sort of

cool areas where it’s not turned on and

each gene gives us a fingerprint and

remember that we’ve assayed all the

25,000 genes in the genome and have all

that data available so what can

scientists learn about this data and

we’re just starting to look at this data

ourselves there’s some basic things that

you would want to understand - great

examples are drugs Prozac and wellbutrin

these are commonly prescribed

antidepressants now remember we’re a

saying genes genes send the instructions

to make proteins proteins are targets

for drugs so drugs bind to proteins and

either turn them off etc so if you want

to understand the action of drugs you

want to understand how they’re acting in

the ways you want them to and also in

the ways you don’t want them to and the

side effect profile etc you want to see

where those genes are turned on and for

the first time we can actually do that

we can do that in multiple individuals

since we’ve a say - so now we can look

throughout the brain we can see this

unique fingerprint and we get

confirmation we get confirmation that

indeed the gene is

for something like prozac in

serotonergic structures things that are

already known to be affected but we get

to see the whole thing we also get to

see areas that no one has ever looked at

before and we see these genes turned on

there is this interesting side effects

it could be one other thing you can do

was such a thing is you can because it’s

a it’s a pattern matching exercise

because there’s a unique fingerprint we

can actually scan through the entire

genome and find other proteins that show

a similar fingerprint so if you’re in

drug discovery for example you can go

through an entire listing of what the

genome has on offer to find perhaps

better drug targets and optimize most of

you are probably familiar with

genome-wide Association studies in the

form of people covering in the news

saying scientists have recently

discovered the gene or genes which

affect X and so these kinds of studies

are routinely published by scientists

and they’re great and they analyze large

populations they look at their entire

genomes and they try to find hotspots of

activity that are that are linked

causally to genes but what you get out

of such an exercise is simply a list of

genes it tells you the what but it

doesn’t tell you the where and so it’s

very important for those researchers

that we’ve created this resource now

they can come in and they can start to

get clues about activity they can start

to look at common pathways other things

that they simply haven’t been able to do

before

so I think this audience in particular

can understand the importance of

individuality and I think every human we

all have different genetic backgrounds

we all have lived separate lives but the

fact is our genomes are greater than 99%

similar we’re very very similar at the

genetic level and what we’re finding is

actually even at the brain biochemical

level we are quite similar and so this

shows it’s not 99% but it’s roughly 90

percent correspondence at a reasonable

cutoff so everything in the cloud is

sort of roughly correlated and then we

find some outliers some things that lie

beyond the cloud and those genes are

interesting but they’re very subtle so

I think it’s just an important message

to take home today that even though we

celebrate all of our differences we are

quite similar even at the brain level

and one of those differences look like

this is an example of a study that we

did to follow up and see what exactly

those differences were and they’re quite

subtle these are things where genes are

turned on in an individual cell type

these are two genes that we found that

as good examples one is called ghrelin

it’s involved in early developmental

cues discs one is a gene that’s deleted

in schizophrenia

these aren’t schizophrenic individuals

but they do show some population

variations and so what you’re looking at

here in donor 1 and donor 4 which are

the exceptions to the other two that

genes are being turned on at a very

specific subset of cells it’s this dark

purple precipitate within the cell

that’s telling us a gene is turned on

there whether or not that’s due to the

individual’s genetic background or their

experiences we don’t know those kinds of

studies require much larger populations

so I’m going to leave you with a final

note about the complexity of the brain

and how much more we have to go I think

these resources are incredibly valuable

they give researchers a handle on where

to go but we’ve only looked at a handful

of individuals at this point we’ve

certainly going to be looking at more

I’ll just close by saying that that the

the tools are there and this is truly an

unexplored undiscovered continent this

is the the new frontier if you will and

so for those who are undaunted but

humbled by the complexity of the brain

the future awaits thanks

长期以来,人类一直

对人类大脑着迷 我们绘制图表 我们

描述了它 我们绘制了它 我们现在绘制了

它 就像我们世界的物理地图

受到技术的高度影响 认为谷歌

地图认为 GPS 相同

大脑映射真正的转变正在发生,

所以让我们来看看

大多数人第一次

看到一个新鲜的人脑

时的大脑,当有人向您展示

大脑通常是什么时,它看起来不像您通常看到的那样 “正在观察的

是一个固定的大脑,它是灰色的,

这个外层是脉管系统

,这在人脑周围是不可思议的

这是血管 20%

的氧气来自你的肺部 20%

从你的心脏泵出的血液正在

服务 这个器官

基本上是如果你把五分之二握

在一起,它只

比两个拳头稍大一点,科学家们

在 20 世纪末了解到,

他们可以跟踪血流以

非侵入性方式绘制地图 重新活动

在人脑中进行,例如,

他们可以看到

大脑的后部正在转动

这是

颞叶皮层 这是

初级听觉处理的区域,因此您正在

听到我的话,您将其发送

到高级语言处理中心,

朝向大脑前部,

是所有杂乱无章的地方

更复杂的地方 认为决策是

成年后期的最后两个成熟类型 这是你所有

决策过程

的地方 这是你现在决定的地方

你可能不会

点牛排当晚餐所以如果你

更深入地观察大脑

如果你在横截面中观察它,其中一件事

你不能真正看到

那里的很多结构,但实际上有

很多 那里的结构 它的细胞和

电线都连接在一起 所以大约

一百年前,一些科学家

发明了它

,可以染色细胞,

这里用浅蓝色显示,你可以

看到神经元细胞体

被染色的区域,你可以看到的是

这种非常不均匀的你会看到更多的

结构那个

大脑的外部是新皮质它是

一种连续的处理单元,如果

你愿意的话,但你也可以看到

下面的东西,所有

这些空白区域都是

电线穿过的区域

可能细胞密度较低,因此

我们的大脑中有大约 860 亿个神经元

,正如您所见,它们的

分布非常不均匀,它们的

分布方式确实有助于它们的

潜在功能和 当然,正如我

之前提到的,因为我们现在可以

开始绘制大脑功能图,我们可以开始

将它们与单个细胞联系起来,所以

让我们更深入地了解一下

神经 ns,正如我提到的,有 860

亿个神经元,还有这些

更小的细胞,你会看到这些是

星形胶质细胞的支持细胞,

神经本身就是接收输入的那些,

它们正在存储它,

它们正在处理每个神经元

通过突触连接到大脑中多达 10,000 个

其他神经元,每个

神经元本身在很大程度上是独一无二的,然后

单个

神经元和大脑集合中的神经元的独特特征

是由其潜在生物化学的基本特性驱动的,

它们是蛋白质

控制

诸如离子通道运动之类的东西的蛋白质它们

控制着神经系统细胞

与谁合作并且它们

基本上控制着神经

系统必须这样做的一切如果我们放大到

更深的水平所有这些

蛋白质都由 我们的基因组 我们每个人都有

23 对染色体 我们从妈妈那里得到一对

从爸爸那里得到,在这些

染色体上大约有 25,000 个基因

编码在 DNA

中的特定细胞驱动其

潜在生物化学的性质取决于

这 25,000 个基因中的哪一个被

打开以及它们在什么水平上被打开

,因此我们的项目正在寻求查看

这个读数以了解其中哪些

25,000 个基因轮流进行

所以为了进行这样的项目

我们显然需要大脑 所以我们派我们的

实验室技术人员出去 我们正在寻找

正常的人类大脑 我们实际上

开始的是一个法医

办公室 这是一个把

死者带进来的地方 我们 正在寻找正常的

人脑

我们选择这些大脑时有很多标准 我们

要确保我们有

20 到 60 岁之间的正常人 他们

在某种程度上是自然死亡

大脑没有受伤 没有

精神病史 疾病 船上没有药物 我们

进行了毒理学检查 我们

对我们所采取的大脑非常小心

我们也在选择

我们可以从中获得组织的大脑 我们可以获得我们可以得到的组织 耳鼻喉科

要在死亡后 24 小时内取出组织

,因为我们

试图测量的 RNA 是

我们基因的读数是非常不稳定的,

所以我们必须非常迅速地移动

关于大脑集合的一个旁注

由于我们收集的方式以及

我们需要征得同意,我们实际上拥有

的男性大脑比女性

大脑多得多 男性更有可能

在壮年时意外死亡,

而男性更有可能

拥有重要的 其他配偶

同意而不是相反,所以

我们在收集地点做的第一件事

就是收集所谓

的先生 这是磁共振成像

MRI 它是一个标准模板,

我们将通过它挂起其余部分

数据,所以我们收集这个先生,你可以

把它想象成

我们地图的卫星视图接下来我们要做的是我们

收集所谓的漫反射和

张量成像这映射

大脑中的大电缆,你可以再次

想想这几乎是我们

州际公路的地图,如果你愿意的话,

大脑会从头骨中取出,

然后切成 1 厘米长的薄片,

然后冷冻成固体,然后

运到西雅图,在西雅图,我们

把这些拿走,这是一个完整的人类

半球,我们把它们放进去,

基本上是一个美化的切肉机

,这里有一个刀片,它会切开

这部分组织,并将其

转移到显微镜载玻片

上,然后我们将其中一个污渍涂

在上面,然后我们扫描它 然后我们

得到的是我们的第一次

说唱,所以这就是我们的专家

进来的地方,他们制作基本的解剖学

标志 mminton siddur 这个州的

边界如果你穿上那些相当

宽泛的轮廓,我们就可以

将大脑分成更多的

碎片 然后我们可以安装一个

较小的低温恒温器,这是一个展示,

这是冷冻组织,它

正在被切割,这是 20 微米薄,所以

这是关于婴儿头发的,记住

它是冷冻的,所以你 c 看到这里

使用画笔的老式

技术将带一张显微镜

载玻片,我们非常小心地融化在

这张载玻片上,然后它会进入一个

机器人,它会在上面涂抹其中一种

污渍,我们的解剖学家

会去的 深入研究一下,

这就是他们在显微镜下可以看到的东西,

您可以看到

大小细胞和集群以及各个

地方的集合和配置,并且根据他们的专业知识,他们

了解在哪里进行这些

分配,并且他们可以进行 基本上

什么是参考点 这是一张

更详细的地图,我们的科学家然后

使用它返回到

该组织的另一块并进行所谓的激光

扫描显微切割,这样

技术人员就会按照他们沿着那里划线的指示进行操作

,然后

激光实际切割 你可以看到那里的蓝

点正在切割并且组织

脱落你可以在显微镜载玻片上

看到这就是真实发生的

事情 我在下面有一个容器

收集组织 我们

取出组织 我们

使用一些基本技术从中纯化 RNA 然后我们

在其上放置一个荧光标签

我们取出该标记材料 然后我们将

它放到一个称为微阵列的东西

上 对你来说可能看起来像一堆点

,但这些单独的

点中的每一个实际上都是

我们在玻璃上发现的人类基因组的一个独特片段,

上面大约有 60,000 个元素

,因此我们反复测量

了 25,000 个基因中的各种基因 基因组

,当我们采集一个样本并将

其与它杂交时,

如果您要

定量地确定该样本中哪些基因被

打开,我们将获得一个独特的指纹,现在我们

一遍又一遍地这样做,对于任何

给定的大脑,这个过程都会占用一千多个

每个大脑的样本 这里显示的这个

区域是一个叫做海马体的区域,

比学习和记忆更重要,它

贡献了这千个样本中的大约 70 个样本,

所以每个样本给出 我们

大约有五万个

重复测量的数据点 一千个样本

所以

对于一个给定的人脑我们大约有 5000

万个数据点 我们现在已经对人脑的

数据进行了处理 我们已经将所有这些数据放在

一起,我

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘’s 着眼

于 2004

年的

我们整合的模式

你会开始从我们之前收集到的东西中识别出这些东西

是 MR 它提供的框架

右侧有一个操作员侧

允许你转动它允许你

放大它允许你 突出

单个结构,但最

重要的是,我们现在正在映射到这个

解剖框架,这是一个通用

框架,人们可以了解

我们的基因在哪里打开,所以红色

水平是基因所在的位置 s 开启

程度很高 绿色是这种

很酷的区域,它没有打开,

每个基因都给我们一个指纹,

请记住,我们已经分析了

基因组中的所有 25,000 个基因,并且拥有所有

可用的数据,所以科学家们能做什么?

了解这些数据,

我们才刚刚开始自己查看这些数据

,有一些基本的东西

你想了解——很好的

例子是药物百忧解和维布特林

这些是常用的

抗抑郁药现在记住我们是一个

说法基因基因发送

制造蛋白质的说明 蛋白质是

药物的目标,因此药物与蛋白质结合

并关闭它们等等,所以如果你

想了解药物的作用,你

想了解

它们如何以你想要的方式以及

在 您不希望它们的方式以及

副作用概况等您想查看

这些基因在哪里打开,这

是我们第一次可以真正做到这一点,

我们可以在多个个体中做到这一点

因为我们有发言权 - 所以现在我们可以查看

整个大脑 我们可以看到这个

独特的指纹 我们得到

确认 我们得到确认

确实该基因是

用于

血清素能结构中的百忧解之类的东西

已知会受到影响但我们

看到整个事情 我们也

看到了以前没有人看过的领域

我们看到这些基因被打开

有这种有趣的副作用

它可能是你可以做的另一

件事 就是这样你可以 因为

这是一个模式匹配练习,

因为有一个独特的指纹,我们

实际上可以扫描整个

基因组并找到其他

显示相似指纹的蛋白质,所以如果你在

药物发现中,例如你可以

浏览基因组的完整列表

提供寻找可能

更好的药物靶点并优化

你们中的大多数人可能熟悉

全基因组关联研究,

形式为人们在新闻中报道

称科学 科学家们最近

发现了

影响 X 的一个或多个基因,所以这类研究

通常由科学家发表

,他们很棒,他们分析大量

人群,他们查看整个

基因组,并试图找到活动热点

与基因有因果关系,但你

从这样的练习中得到的只是一个基因列表,

它告诉你什么,但它

没有告诉你在哪里,所以

对于那些研究人员来说

,我们现在已经创造了这个资源是非常重要的。

可以进来,他们可以开始

获得有关活动的线索,他们可以

开始研究共同途径 其他

他们以前根本无法做到的事情,

所以我认为这些观众尤其

可以理解个性的重要性

,我认为每个 人类 我们

都有不同的遗传背景

我们都过着不同的生活 但

事实是我们的基因组相似度超过 99%

我们在

基因水平上非常相似 我们发现

实际上即使在大脑生化

水平上我们也非常相似,所以这

表明它不是 99%,而是

在合理的

截止值下大约 90% 对应,所以云中的所有

东西都大致相关,然后我们

发现了一些异常值

云之外的一些东西和那些基因很

有趣,但它们非常微妙,所以

我认为这只是

今天要带回家的一个重要信息,即使我们

庆祝我们所有的差异,我们

即使在大脑水平上也非常

相似 这些差异看起来像

这是一个研究的例子,我们

进行了跟进,看看

这些差异到底是什么,它们非常

微妙这些是基因

在单个细胞类型中打开的东西

这是我们的两个基因 发现

作为一个很好的例子,一个叫做生长素释放肽

它参与了早期发育

线索盘一个是

在精神分裂症中

被删除的基因这些不是精神分裂症个体,

但他们 确实显示了一些人口

变化,所以你在

这里看到的供体 1 和供体 4 是

另外两个的例外,

基因在一个非常

特定的细胞亚群中被打开,这是细胞内的这种

深紫色沉淀物

告诉我们一个基因在那里开启,

无论这是否是由于

个体的遗传背景或他们的

经验,我们不知道这类

研究需要更大的人群,

所以我要给你最后

一点关于复杂性的说明 大脑

以及我们还需要做什么 我认为

这些资源非常有价值,

它们可以让研究人员知道

去哪里,但我们目前只研究了少数

几个人,我们

肯定会研究更多

最后,我要说的

是工具就在那里,这确实是一个

未被探索的未被发现的大陆,

如果你愿意的话,这就是新的前沿,

所以对于那些无所畏惧但因

合作而谦卑的人来说 大脑的复杂性

未来等待着谢谢