How spontaneous brain activity keeps you alive Nathan S. Jacobs

You probably don’t need to be told
how important your brain is.

After all, every single thing
you experience,

your thoughts and your actions,

your perceptions and your memories

are processed here
in your body’s control center.

But if this already seems like a lot
for a single organ to handle,

it’s actually only a small
part of what the brain does.

Most of its activities are ones
you’d never be aware of,

unless they suddenly stopped.

The brain is made up
of billions of neurons,

and trillions of connections.

Neurons can be activated
by specific stimuli or thoughts,

but they are also often
spontaneously active.

Some fire cyclically in a set pattern.

Others fire rapidly in short bursts
before switching off,

or remain quiet for long periods

until thousands of inputs from other
neurons line up in just the right way.

On a large scale,

this results in elaborate rhythms
of internally generated brain activity,

humming quietly in the background

whether we’re awake, asleep,

or trying not to think
about anything at all.

And these spontaneously
occurring brain functions

form the foundation upon which
all other brain functions rely.

The most crucial of these automatically
occurring activities

are the ones that keep us alive.

For example, while you’ve been
paying attention to this video

spontaneous activity in your brain
has been maintaining your breathing

at 12 to 16 breaths a minute,
making sure that you don’t suffocate.

Without any conscious effort,

signals from parts of your brainstem
are sent through the spinal cord

to the muscles that inflate your lungs,

making them expand and contract,
whether or not you’re paying attention.

The neuronal circuits underlying such
rhythmic spontaneous activity

are called central pattern generators,

and control many
simple repetitive behaviors,

like breathing,

walking,

and swallowing.

Ongoing neural activity also underlies
our sensory perception.

It may seem

that the neurons in your retina
that translate light into neural signals

would remain quiet in the dark,

but in fact,

the retinal ganglion cells
that communicate with the brain

are always active.

And the signals they send are increases
and decreases in the rate of activity,

rather than separate bursts.

So at every level, our nervous system
is teeming with spontaneous activity

that helps it interpret and respond
to any signals it might receive.

And our brain’s autopilot isn’t just
limited to our basic biological functions.

Have you ever been on the way home,

started thinking
about what’s for dinner,

and then realized you don’t remember
walking for the past five minutes?

While we don’t understand all the details,

we do know that the ongoing activity
in multiple parts of your brain

is somehow able to coordinate
what is actually a complex task

involving both cognitive
and motor functions,

guiding you down the right path
and moving your legs

while you’re getting dinner figured out.

But perhaps the most interesting thing
about spontaneous brain function

is its involvement in one
of the most mysterious

and poorly understood phenomena
of our bodies: sleep.

You may shut down
and become inactive at night,

but your brain doesn’t.

While you sleep,

ongoing spontaneous activity gradually
becomes more and more synchronized,

eventually developing into large,
rhythmic neural oscillations

that envelop your brain.

This transition to the more
organized rhythms of sleep

starts with small clusters of neurons
tucked in the hypothalamus.

Despite their small number,

these neurons have a huge effect

in turning off brainstem regions
that normally keep you awake and alert,

letting other parts,
like the cortex and thalamus,

slowly slip into their
own default rhythms.

The deeper we fall into sleep,

the slower and more synchronized
this rhythm becomes,

with the deepest stages dominated by large
amplitude, low frequency delta waves.

But surprisingly, in the middle
of this slow wave sleep,

the brain’s synchronized
spontaneous activity

repeatedly transitions
into the sort of varied bursts

that occur when we’re wide awake.

This is the sleep stage
known as REM sleep,

where our eyes move rapidly
back and forth as we dream.

Neuroscientists are still trying to answer
many fundamental questions about sleep,

such as its role in rejuvenating
cognitive capacity,

cellular homeostasis,

and strengthening memory.

And more broadly, they are exploring

how it is that brain can accomplish
such important and complex tasks,

such as driving, or even breathing,
without our awareness.

But for now, until we are better able

to understand the inner workings
of their spontaneous functioning,

we need to give our brains credit
for being much smarter

than we ourselves are.

你可能不需要被告知
你的大脑有多重要。

毕竟,
你所经历的每一件事,

你的思想和行动,

你的感知和你的记忆

都是
在你身体的控制中心处理的。

但如果这
对于单个器官来说已经看起来很多,

它实际上
只是大脑工作的一小部分。

它的大部分活动都是
你永远不会意识到的,

除非它们突然停止。

大脑由
数十亿个神经元

和数万亿个连接组成。

神经元可以
被特定的刺激或想法激活,

但它们也经常
自发地活跃。

有些以固定模式循环发射。

其他神经元
在关闭之前会在短时间内快速触发,

或者长时间保持安静,

直到来自其他
神经元的数千个输入以正确的方式排列。

在很大程度上,

这会导致
内部产生的大脑活动的复杂节奏,

无论我们是醒着、睡着

还是试图不去想
任何事情,都会在背景中安静地嗡嗡作响。

这些自发
发生的大脑功能

构成了
所有其他大脑功能所依赖的基础。

这些自动
发生的活动

中最重要的是那些让我们活着的活动。

例如,当您一直
在关注这段视频时

,您的大脑中的自发活动
一直保持您的

呼吸频率为每分钟 12 到 16 次,
确保您不会窒息。

无需任何有意识的努力,

来自脑干部分的信号就会
通过脊髓发送

到使肺部膨胀的肌肉,

使它们扩张和收缩,
无论你是否注意。

这种有节奏的自发活动背后的神经元回路

被称为中央模式发生器,

并控制许多
简单的重复行为,

如呼吸、

行走

和吞咽。

持续的神经活动也是
我们感官知觉的基础。

看起来你
视网膜中将光转化为神经信号的神经元

在黑暗中会保持安静,

但事实上,与大脑交流

的视网膜神经节

细胞总是活跃的。

他们发送的信号
是活动率的增加和减少,

而不是单独的突发。

所以在每个层面上,我们的神经系统
都充满了自发的活动

,帮助它解释和响应
它可能收到的任何信号。

而且我们大脑的自动驾驶仪不仅
限于我们的基本生物学功能。

你有没有在回家的路上,

开始想
晚餐吃什么,

然后意识到你不记得
过去五分钟走路了?

虽然我们不了解所有细节,

但我们确实知道,
大脑多个部分的持续活动

能够以某种方式
协调实际上

涉及认知
和运动功能的复杂任务,

引导您走上正确的道路
并移动您的

在你吃饭的时候弄明白腿。

但也许关于自发性大脑功能最有趣的事情

是它参与了我们身体中
最神秘和最不为人知的

现象
之一:睡眠。

你可能会
在晚上关闭并变得不活跃,

但你的大脑不会。

当你睡觉时,

持续的自发活动逐渐
变得越来越同步,

最终发展成大的、
有节奏的神经振荡

,包围你的大脑。

这种向更有
组织的睡眠节奏的转变

始于
隐藏在下丘脑中的小神经元簇。

尽管数量不多,但

这些神经元

在关闭
通常让你保持清醒和警觉的脑干区域方面具有巨大的作用,

让其他部分,
如皮层和丘脑,

慢慢滑入它们
自己的默认节律。

我们进入睡眠的深度越深,这种节奏就会变得

越慢、越同步

,最深的阶段由大
振幅、低频 delta 波主导。

但令人惊讶的是,在
这种慢波睡眠的中间

,大脑的同步
自发活动

反复转变

我们完全清醒时发生的那种不同的爆发。

这是
被称为 REM 睡眠的睡眠阶段

,我们的眼睛
在做梦时快速来回移动。

神经科学家仍在试图回答
许多关于睡眠的基本问题,

例如它在恢复
认知能力、

细胞稳态

和增强记忆力方面的作用。

更广泛地说,他们正在探索

大脑如何在没有我们意识的情况下完成
如此重要而复杂的任务

,例如驾驶,甚至呼吸

但就目前而言,在我们能够更好

地理解
它们自发功能的内部运作之前,

我们需要相信我们的大脑

比我们自己聪明得多。