How we can use technology to fight brain disorders

[Music]

when my father’s grandfather was born

life expectancy ranged around 35 years

people died from infections cancer or

metabolic syndromes

since then life expectancy has

more than doubled and reached 82 years

in the european

union now diseases that were once deadly

don’t play a big role anymore

but there is one cluster of diseases

that does not show this trend

disorders of the brain

25 years ago nine percent of

all invalidity pensions were paid due to

depression

or anxiety today

this share has increased to 43

and what is even more alarming is that

the number of teenagers

who show symptoms of depression has more

than doubled

in the last 10 years it is estimated

that more than 1 billion people on this

planet suffer from a disorder of the

brain

for example depression anxiety

addiction adhd alzheimer’s

parkinson’s psychosis or epilepsy

despite all progress in medicine why

don’t we have effective tools to treat

disorders of the brain

the reason is that despite all

technological progress

we still don’t have the answers to very

fundamental questions

for example how does the brain create

what we

perceive as reality and what are the

neural substrates

of brain functions affected by

depression anxiety or addiction

the complexity of the brain and the

variability

across people seems prohibitive to

answer

any of these questions but there is hope

we have now entered an era in which

clinical neurotechnology may help to

answer some of these questions

neurotechnology is defined as any

artificial means

to record analyze or modulate brain

activity

and there’s been great progress in

development

of tools that allow us to measure brain

activity at

unprecedented temporal and spatial

resolution

by analyzing this activity in real time

and translating it into a control signal

of a digital device man machine

interaction

has now reached a new level using such a

brain computer interface

or bci it is now possible to control a

robot

or a drone just by thinking

the first clinically meaningful bci

was introduced in the late 90s when a

patient

who suffered from als and was locked in

so he was not able to speak or move and

he depended

on artificial respiration

could select single letters on the

screen just by modulating his electric

brain activity

with this system he could write a whole

letter

in parallel implantable brain computer

interfaces were developed

for reconstruction of complex movements

here you see a woman who suffered a

brain stem stroke

and who was incapable of moving any of

her four limbs

in a meaningful functional way after

implantation of a neural implant she was

able to control this robotic arm

in three dimensions and for the first

time grasp a cup of coffee

and drink it

however implantation entails the risk of

bleedings and infections

there is no certification for long-term

use of such devices

and none of these patients have used the

system

outside of the laboratory in their daily

life

there are also other disadvantages when

implanting such devices for example the

user cannot remove the device at will

and implanting such a device in hundreds

of thousands or even millions of people

raises a number of very complex

neuroethical questions

together with my team i have developed a

non-invasive brain computer interface

that does not

depend on any implantation here you see

a number of

patients who suffered from a spinal cord

injury

they are all unable to move their

fingers they cannot grasp

anything for example a pen a cup or a

piece

of paper we have equipped these patients

with a neural

exoskeleton that translates their

intention to move their paralyzed

fingers

into actual movements and with this

system

these patients can now grasp these

different objects of daily living

and manipulate them the system

could be also used outside of the

laboratory so the people could leave

the lab and go to a restaurant order a

donut

and eat for the first time with a fork

so we asked the patients

what they would like to do with their

new ability

and this man he asked for a plate of

potato chips that he hasn’t eaten for

many years

independently here you see how this

system

really has an impact

on its quality of life

we have also used the system in chronic

stroke patients who were unable to move

the fingers

they used the system for a whole month

on a daily basis

and after one month we were very

surprised to find

that some of these patients were able to

move their paralyzed fingers

even without the exoskeleton when we

looked into their brains using advanced

neuroimaging we found

that their brains have reorganized and

rewired

in response to using this neural

exoskeleton brain activity shifted

to those areas that were connected to

the exoskeleton

the same principle may also work in the

treatment

of other disorders of the brain

however in contrast to movements we

cannot ask

a patient to be depressed or anxious

and then stop it like a movement

but there is a solution or there might

be a solution using virtual reality

whole body variable sensors and advanced

non-invasive

brain stimulation using these tools

we can now specifically manipulate the

sensory input

and track complex decision making and

behavior

while brain activity is recorded

using machine learning typically used in

artificial intelligence

for example deep neural networks we can

now detect

and identify the hidden patterns of

brain activity

that underlie the process of how we

build our internal models of the world

to assess these models

we need to record brain activity at the

highest possible

temporal and spatial resolution

and while implantation can help us to

characterize

these hidden patterns it is now possible

to measure and assess these patterns

non-invasively using quantum sensors

quantum sensors are working at room

temperature

they are variable and they provide a

much higher

spatial resolution than established

techniques like electroencephalography

although there are still a number of

technical challenges that have to be

solved

it is very obvious that using quantum

sensors

has many advantages over implantation

despite progress in biosignal sensors

we have also developed advanced brain

stimulation techniques

these tech these devices reach

unprecedented spatial resolution using

electromagnetic fields

we can use these systems to target

large-scale brain networks that are

affected by depression

or dementia with support of the european

research council we have now merged all

these techniques

in a closed-loop real-time system and

you’re working on using the system

in patients with a variety of disorders

of the brain

to see what is already possible now

let’s listen

a moment to ms felski kruger who

suffered from an incapacitating

depression for more than a year

and who was treated with non-invasive

brain stimulation at the charity

and

foreign

i am convinced that the next chapter in

clinical neurotechnology will be a

turning point in how we treat disorders

of the brain

provided we implement a firm

neuroethical framework

keeping an eye on critical issues such

as privacy

data security and accessibility

neurotechnology may become the biggest

game changer

in recent human history thank you

[Applause]

[Music]

[音乐]

当我父亲的祖父出生时,

预期寿命在 35 岁左右,

人们死于感染癌症或

代谢综合征

从那时起,预期寿命

增加了一倍多,在欧盟达到了 82 岁

,曾经致命的疾病

不再发挥作用 不再发挥重要作用,

但有一组

疾病没有表现出这种趋势

25 年前大脑疾病有 9%

是由于抑郁或焦虑而支付的,

如今

这一比例已增加到 43

,更令人担忧的是

在过去 10 年中,

出现抑郁症状的青少年

人数增加了一倍

以上 据估计

,这个星球上有超过 10 亿人

患有大脑疾病,

例如抑郁症焦虑成瘾症、

帕金森氏症或癫痫症,

尽管 医学上的所有进步 为什么

我们没有有效的工具来治疗

脑部疾病

尽管

技术取得了所有进步,

但我们仍然无法回答非常

基本的问题

,例如大脑如何创造

我们

认为的现实以及

受抑郁焦虑或成瘾影响的大脑功能的神经基础是什么

大脑的复杂性和

不同人之间的差异似乎无法回答

任何这些问题,但希望

我们现在已经进入了一个

临床神经技术可能有助于

回答其中一些问题的

时代 神经技术被定义

为记录分析或调节大脑

活动的任何人工手段,

并且有 通过实时分析

大脑活动并将其转换为数字设备人机交互的控制信号,使我们能够

前所未有的时间和空间

分辨率测量大脑活动的工具开发取得了巨大进展,

现在使用这种大脑已经达到了一个新的水平

计算机接口

或 bci 现在可以控制

机器人

或无人机只是

在 90 年代后期引入了第一个具有

临床意义

的 bci

屏幕只需用这个系统调节他的

脑电活动

,他就可以并行写一个完整的

字母 植入式脑计算机

接口被开发

用于重建复杂的运动

这里你看到一个患有

脑干中风

并且无法移动任何

她的女人

植入神经植入物后,她

能够以有意义的功能方式控制四个肢体,她能够在三个维度上控制这个机械臂

,并且第

一次拿着一杯

咖啡喝了它,

但是植入会带来

出血和感染的风险

没有认证 长期

使用此类设备,

并且这些患者均未

在实验室外使用过该系统 在他们的

日常生活中

,植入此类设备时还有其他缺点

,例如

用户无法随意移除设备,

并且在

数十万甚至数百万人中植入此类设备

与我的团队一起引发了许多非常复杂的神经伦理问题 我开发了一种不依赖于任何植入的

非侵入性脑机接口

在这里你

看到许多

患有脊髓损伤的患者

他们都无法移动他们的

手指他们无法抓住

任何东西,例如笔、杯子或 在

一篇论文中,我们为这些患者

配备了神经

外骨骼,将

他们移动麻痹手指的意图

转化为实际动作,有了这个

系统,

这些患者现在可以抓住这些

不同的日常生活对象

并操纵它们,该系统

也可以在户外使用

实验室,这样人们就可以

离开实验室去餐馆点

甜甜圈

第一次用叉子吃饭,

所以我们问病人

他们想用他们的新能力做什么

,这个人他要了一盘

他多年来没有独立吃过的薯片,

你看这是怎么回事

系统

确实对其生活质量产生了影响

我们还在慢性中风患者中使用了该系统,

他们无法

移动手指

他们每天使用该系统整整

一个月,一个月后我们非常

惊讶地

发现 当我们使用先进的神经成像技术观察他们的大脑时,其中一些患者即使没有外骨骼也能够

移动他们麻痹的手指,

我们

发现他们的大脑已经重组和

重新布线,

以响应使用这种神经

外骨骼大脑活动转移

到那些连接到的区域

骨骼同样的原理也可以用于

治疗其他脑部疾病,

但与运动相反,我们

不能

要求患者 感到沮丧或焦虑

,然后像运动一样停止它,

但有一个解决方案,或者可能

有一个解决方案,使用虚拟现实

全身可变传感器和先进的

非侵入性

脑刺激使用这些工具,

我们现在可以专门操纵

感觉输入

并跟踪复杂 决策和

行为,

而大脑活动是

使用人工智能中通常使用的机器学习记录的

,例如深度神经网络,我们

现在可以检测

和识别大脑活动的隐藏模式,这些模式

是我们如何

建立我们的世界内部模型

以评估的过程的基础 这些模型

我们需要以

尽可能高的

时间和空间分辨率记录大脑活动

,而植入可以帮助我们

表征

这些隐藏的模式,现在可以

使用量子传感器非侵入性地测量和评估这些模式

量子传感器在室温下工作

它们是可变的,它们提供了

很多 她的

空间分辨率优于

脑电图等既定技术

尽管仍有许多

技术挑战需要

解决

很明显,

尽管生物信号传感器取得了进展,但使用量子传感器比植入具有许多优势

我们还开发了先进的脑

刺激技术

这些技术 这些设备使用电磁场达到了

前所未有的空间分辨率

我们可以使用这些系统来针对

受抑郁症

或痴呆症影响的大规模大脑网络 在欧洲

研究委员会的支持下 我们现在已经将所有

这些技术合并

到一个闭环实时中 系统,

您正在努力

在患有各种脑部疾病的患者中使用该系统,

看看已经有什么可能现在

让我们

听听 felski kruger 女士的讲话,她

患有

一年多的失能抑郁症

并接受了治疗 在慈善机构进行非侵入性

脑刺激

我相信

临床神经技术的下一章将成为

我们如何治疗大脑疾病的转折点,

只要我们实施一个坚定的

神经伦理框架

,密切关注

隐私

数据安全和可访问性等关键问题,

神经技术可能会成为 近代人类历史上最大的

游戏规则改变者

谢谢你们

[鼓掌]

[音乐]