Performing brain surgery without a scalpel Hyunsoo Joshua No

Every year, tens of thousands of people
world-wide have brain surgery

without a single incision:

there’s no scalpel, no operating table,
and the patient loses no blood.

Instead, this procedure takes place
in a shielded room

with a large machine that emits
invisible beams of light

at a precise target inside the brain.

This treatment is called
stereotactic radiosurgery,

and those light beams
are beams of radiation:

their task is to destroy tumors by
gradually scrubbing away malignant cells.

For patients, the process begins
with a CT-scan,

a series of x-rays that produce
a three-dimensional map of the head.

This reveals the precise location, size,
and shape of the tumor within.

The CT-scans also help to calculate
something called “Hounsfield Units,”

which show the densities
of different tissues.

This offers information
about how radiation

will propagate through the brain,
to better optimize its effects.

Doctors might also use
magnetic resonance imaging, or MRI’s,

that produce finer images of soft tissue,

to assist in better outlining
a tumor’s shape and location.

Mapping its precise position and size
is crucial

because of the high doses of radiation
needed to treat tumors.

Radiosurgery depends on the use
of multiple beams.

Individually, each delivers a low dose
of radiation.

But, like several stage lights converging
on the same point

to create a bright and inescapable
spotlight, when combined,

the rays of radiation collectively
produce enough power to destroy tumors.

In addition to enabling doctors to target
tumors in the brain

while leaving the surrounding
healthy tissue relatively unharmed,

the use of multiple beams
also gives doctors flexibility.

They can optimize the best angles
and routes through brain tissue

to reach the target and adjust
the intensity within each beam

as necessary.

This helps spare critical structures
within the brain.

But what exactly does this ingenious
approach do to the tumors in question?

When several beams of radiation intersect
to strike a mass of cancerous cells,

their combined force essentially
shears the cells’ DNA,

causing a breakdown
in the cells’ structure.

Over time, this process cascades
into destroying the whole tumor.

Indirectly, the rays also damage the area
immediately surrounding the DNA,

creating unstable particles
called free radicals.

This generates a hazardous
microenvironment

that’s inhospitable to the tumor,

as well as some healthy cells
in the immediate vicinity.

The risk of harming non-cancerous tissue
is reduced

by keeping the radiation beam coverage

as close to the exact shape
of the tumor as possible.

Once radiosurgery treatment has destroyed
the tumor’s cells,

the body’s natural cleaning
mechanism kicks in.

The immune system rapidly sweeps
up the husks of dead cells

to flush them out of the body, while
other cells transform into scar tissue.

Despite its innovations, radiosurgery
isn’t always the primary choice

for all brain cancer treatments.

For starters, it’s typically reserved
for smaller tumors.

Radiation also has a cumulative effect,

meaning that earlier doses can overlap
with those delivered later on.

So patients with recurrent tumors

may have limitations with future
radiosurgery treatments.

But these disadvantages weigh up
against some much larger benefits.

For several types of brain tumors,

radiosurgery can be as successful
as traditional brain surgery

at destroying cancerous cells.

In tumors called meningiomas,
recurrence is found to be equal, or lower,

when the patient undergoes radiosurgery.

And compared to traditional surgery—

often a painful experience
with a long recovery period—

radiosurgery is generally pain-free,

and often requires
little to no recovery time.

Brain tumors aren’t the only target
for this type of treatment:

its concepts have been put to use on
tumors of the lungs, liver, and pancreas.

Meanwhile, doctors are experimenting
with using it to treat conditions

such as Parkinson’s disease, epilepsy,
and obsessive compulsive disorder.

The pain of a cancer diagnosis
can be devastating,

but advancements in these
non-invasive procedures

are paving a pathway
for a more gentle cure.

每年,
全世界有成千上万的人在

没有一个切口的情况下进行脑部手术:

没有手术刀,没有
手术台,患者没有失血。

取而代之的是,这个过程发生
在一个

带有大型机器的屏蔽室中,该机器

向大脑内的一个精确目标发出不可见的光束。

这种治疗称为
立体定向放射外科手术

,这些
光束是放射束:

它们的任务是通过
逐渐擦去恶性细胞来破坏肿瘤。

对于患者,该过程
从 CT 扫描开始,这

是一系列 X 射线,可生成
头部的三维图。

这揭示了其中肿瘤的精确位置、大小
和形状。

CT 扫描还有助于计算
称为“Hounsfield 单位”的东西,

它显示
了不同组织的密度。

这提供了
有关辐射

如何通过大脑传播的信息,
以更好地优化其效果。

医生也可能使用
磁共振成像或 MRI

来产生更精细的软组织图像,

以帮助更好地勾勒
出肿瘤的形状和位置。

由于治疗肿瘤需要高剂量的辐射,
因此绘制其精确位置和大小至关重要。

放射外科手术依赖于
多波束的使用。

单独地,每个都提供低剂量
的辐射。

但是,就像几个舞台灯光会聚
在同一个点

上,形成一个明亮而不可避免的
聚光灯,当它们结合在一起时,

这些辐射线会共同
产生足够的能量来摧毁肿瘤。

除了使医生能够瞄准
大脑中的肿瘤,

同时使周围的
健康组织相对不受伤害外,

多光束的使用
还为医生提供了灵活性。

他们可以优化
穿过脑组织的最佳角度和路线,

以达到目标,并根据需要调整
每个光束内的强度

这有助于节省
大脑内的关键结构。

但是这种巧妙的
方法究竟对所讨论的肿瘤做了什么?

当几束辐射
相交撞击大量癌细胞时,

它们的合力基本上会
剪切细胞的 DNA,

从而
导致细胞结构的破坏。

随着时间的推移,这个过程会
逐步破坏整个肿瘤。

间接地,这些射线还会破坏
DNA 周围的区域,

产生
称为自由基的不稳定粒子。

这会产生一个危险的
微环境

,不利于肿瘤

以及
附近的一些健康细胞。

通过使辐射束覆盖范围

尽可能接近肿瘤的确切
形状,可以降低伤害非癌组织的风险。

一旦放射外科治疗摧毁
了肿瘤细胞

,身体的自然清洁
机制就会启动

。免疫系统会迅速
扫除死细胞的外壳,

将它们排出体外,而
其他细胞则转化为疤痕组织。

尽管有创新,放射外科手术
并不总是

所有脑癌治疗的首选。

首先,它通常
用于较小的肿瘤。

辐射也具有累积效应,

这意味着较早的剂量可以
与后来的剂量重叠。

因此,患有复发性肿瘤的患者

可能会在未来的
放射外科治疗中受到限制。

但这些缺点
与一些更大的好处相提并论。

对于几种类型的脑肿瘤,

放射外科手术可以
像传统的脑外科手术一样成功

地摧毁癌细胞。

在称为脑膜瘤的肿瘤中

当患者接受放射外科手术时,发现复发率相同或更低。

与传统手术相比——

通常是痛苦的经历
和漫长的恢复期——

放射外科通常是无痛的,

而且通常需要
很少甚至不需要恢复时间。

脑肿瘤不是
这种治疗的唯一目标:

它的概念已被用于
肺、肝和胰腺肿瘤。

与此同时,医生们正在尝试
用它来

治疗帕金森病、癫痫
和强迫症等疾病。

癌症诊断的痛苦
可能是毁灭性的,

但这些
非侵入性手术的进步

正在
为更温和的治愈铺平道路。