What are mini brains Madeline Lancaster

This pencil-eraser-sized mass of cells
is something called a brain organoid.

It’s a collection of lab-grown neurons
and other brain tissue

that scientists can use to
learn about full-grown human brains.

And it can be grown from
a sample of your skin cells.

Why would we need such a thing?

Neuroscientists face a challenge:

shielded by our thick skulls and
swaddled in layers of protective tissue,

the human brain is
extremely difficult to observe in action.

For centuries, scientists have tried to
understand them using autopsies,

animal models,

and, in recent years, imaging techniques.

We’ve learned a lot through
all these methods,

but they have limitations.

Conditions like Alzheimer’s
and schizophrenia,

and the effect on
the human brain of diseases like Zika,

continue to hide beyond our view,
and our understanding.

Enter brain organoids,
which function like human brains

but aren’t part of an organism.

Each one comes from
an undifferentiated stem cell,

which is a cell that
can develop into any tissue in the body,

from bone to brain.

Scientists can make undifferentiated
stem cells from skin cells.

That means they can take a skin sample
from a person with a particular condition

and generate brain organoids
from that person.

The hardest part of growing
a brain organoid,

which stumped scientists for years,

was finding the perfect combination of
sugars, proteins, vitamins, and minerals

that would induce the stem cell
to develop a neural identity.

That was only discovered recently,
in 2013.

The rest of the process
is surprisingly easy.

A neural stem cell essentially
grows itself,

similar to how a seed grows into a plant,

all it needs are the brain’s equivalents
of soil, water, and sunlight.

A special gel to simulate
embryonic tissue,

a warm incubator set at body temperature,

and a bit of motion to mimic blood flow.

The stem cell grows into
a very small version

of an early-developing human brain,

complete with neurons that can connect
to one another

and make simplified neural networks.

As mini brains grow, they follow
all the steps of fetal brain development.

By observing this process,
we can learn how our neurons develop,

as well as how we end up with
so many more of them in our cortex,

the part responsible for higher cognition
like logic and reasoning,

than other species.

Being able to grow brains in the lab,
even tiny ones,

raises ethical questions, like:

Can they think for themselves,
or develop consciousness?

And the answer is no, for several reasons.

A brain organoid has the same tissue types
as a full-sized brain,

but isn’t organized the same way.

The organoid is similar to an airplane

that’s been taken apart
and reassembled at random;

you could still study the wings,
the engine, and other parts,

but the plane could never fly.

Similarly, a brain organoid allows us
to study different types of brain tissue,

but can’t think.

And even if mini brains were organized
like a real brain,

they still wouldn’t be able
to reason or develop consciousness.

A big part of what makes our brains so
smart is their size,

and mini brains have only
about 100,000 neurons

compared to the 86 billion
in a full-sized brain.

Scientists aren’t likely to grow larger
brain organoids anytime soon.

Without blood vessels to feed them,

their size is limited
to one centimeter at most.

Finally, mini brains aren’t able
to interact with the outside world.

We learn by interacting
with our environments: receiving inputs

through our eyes, ears, and other
sensory organs, and reacting in turn.

The complex neural networks that underlie
conscious thoughts and actions

develop from this feedback loop.

Without it, the organoids
can never form a functional network.

There’s nothing quite like
the actual human brain,

but mini brains are an unprecedented tool

for studying everything
from development to disease.

With luck, these humble
organoids can help us discover

what makes the human brain unique,

and maybe bring us closer
to answering the age-old question:

what makes us human?

这种铅笔橡皮大小的细胞团
被称为大脑类器官。

它是实验室培养的神经元
和其他脑组织的集合

,科学家可以用来
了解成熟的人类大脑。

它可以从
你的皮肤细胞样本中生长出来。

为什么我们需要这样的东西?

神经科学家面临一个挑战:

在我们厚厚的头骨和
保护性组织层的保护下

,人脑
在活动中极其难以观察。

几个世纪以来,科学家们一直试图
通过尸检、

动物模型

以及近年来的成像技术来了解它们。

我们通过所有这些方法学到了很多东西

但它们也有局限性。

阿尔茨海默氏症
和精神分裂症等疾病,

以及
寨卡病毒等疾病对人类大脑的影响,

继续隐藏在我们的视野
和理解之外。

进入大脑类器官,
它的功能类似于人脑,

但不是有机体的一部分。

每一个都来自
一个未分化的干

细胞,这是一种
可以发育成身体任何组织的细胞,

从骨骼到大脑。

科学家们可以从皮肤细胞中制造出未分化的
干细胞。

这意味着他们可以
从患有特定疾病的人身上采集皮肤样本,


从该人身上生成大脑类器官。

多年来困扰科学家们的大脑类器官的培养最困难的部分

是找到
糖、蛋白质、维生素和矿物质的完美组合

,以诱导干
细胞发展出神经特性。

这是最近才发现的,也
就是 2013

年。剩下的过程
非常简单。

神经干细胞本质上
是自己生长的,

就像种子长成植物一样

,它所需要的只是大脑中的
土壤、水和阳光。

一种模拟
胚胎组织的特殊凝胶,

一个设置在体温下的温暖孵化器,

以及一些模拟血流的运动。

干细胞成长为

早期发育的人类大脑的一个非常小的版本

,其中包含可以相互连接

并简化神经网络的神经元。

随着迷你大脑的成长,它们会遵循
胎儿大脑发育的所有步骤。

通过观察这个过程,
我们可以了解我们的神经元是如何发育的,

以及我们如何最终
在我们的皮层中拥有更多的神经元,皮层

负责比其他物种更高的认知
,如逻辑和推理

能够在实验室中培育大脑,
即使是很小的大脑,也会

引发伦理问题,例如:

他们能独立思考,
还是发展意识?

答案是否定的,有几个原因。

大脑类器官具有与
全尺寸大脑相同的组织类型,

但组织方式不同。

这个类器官类似于

一架被
随机拆开和重新组装的飞机。

你仍然可以研究机翼
、发动机和其他部件,

但飞机永远无法飞行。

同样,脑类器官可以让
我们研究不同类型的脑组织,

但不能思考。

即使迷你大脑
像真正的大脑一样组织起来,

它们仍然
无法推理或发展意识。

使我们的大脑如此聪明的很大一部分原因
是它们的大小

,迷你大脑只有
大约 100,000 个神经元,


全尺寸大脑中有 860 亿个神经元。

科学家们不太可能很快培育出更大的
大脑类器官。

没有血管来喂养它们,

它们的大小最多被限制
在一厘米以内。

最后,迷你大脑无法
与外界互动。

我们通过
与环境互动来学习:

通过我们的眼睛、耳朵和其他
感觉器官接收输入,然后依次做出反应。

构成有意识思想和行动的复杂神经网络就是

从这个反馈回路发展而来的。

没有它,类器官
永远无法形成功能网络。

没有什么能
比得上真正的人类大脑,

但迷你大脑是一种前所未有的工具

,可以研究
从发育到疾病的一切事物。

幸运的是,这些不起眼的类
器官可以帮助我们

发现人类大脑的独特之处,

并可能让我们更
接近回答这个古老的问题:

是什么让我们成为人类?