What investigating neural pathways can reveal about mental health Kay M. Tye

Transcriber: Ivana Korom
Reviewer: Krystian Aparta

I’m going to start by saying something
you think you know to be true.

Your brain creates
all facets of your mind.

So then why do we treat
mental and physical illnesses

so differently,

if we think we know
that the mind comes from the brain?

As a neuroscientist, I’m often told

that I’m not allowed to study
how internal states

like anxiety or craving or loneliness

are represented by the brain,

and so I decided to set out
and do exactly that.

My research program is designed
to understand the mind

by investigating brain circuits.

Specifically, how does our brain
give rise to emotion.

It’s really hard to study
feelings and emotions,

because you can’t measure them.

Behavior is still the best and only window

into the emotional experience of another.

For both animals and people,

yes, self-report is a behavioral output.

Motivated behaviors
fall into two general classes:

seeking pleasure and avoiding pain.

The ability to approach things
that are good for you

and avoid things that are bad for you

is fundamental to survival.

And in our modern-day society,

trouble telling the difference
can be labeled as a mental illness.

If I was having car trouble,

and I took my car to the mechanic,

the first thing they do
is look under the hood.

But with mental health research,

you can’t just pop open the hood
with the press of a button.

So this is why we do
experiments on animals.

Specifically, in my lab, mice.

To understand the brain, well,
we need to study brains.

And for the first time, we actually can.

We can pop open the hood.

We can look inside

and do an experiment
and see what comes out.

Technology has opened new windows
into the black box that is our minds.

The development of optogenetic tools

has allowed us unprecedented control
over specific neurons in the brain

and how they talk to each other
by firing electrical signals.

We can genetically engineer neurons
to be light sensitive

and then use light to control
how neurons fire.

This can change an animal’s behavior,

giving us insight
into what that neural circuit can do.

Want to know how scientists
figure this out?

Scientists developed optogenetic tools
by borrowing knowledge

from other basic science fields.

Algae are single-celled organisms
that have evolved to swim towards light.

And when blue light shines
onto the eyespot of an algae cell,

a channel opens,
sending an electrical signal

that makes little flagella flap

and propels the algae towards sunlight.

If we clone this light-sensitive
part of the algae

and then add it to neurons
through genetic modification,

we can make neurons light-sensitive, too.

Except, with neurons,

when we shine light down
an optical fiber deep into the brain,

we change how they send electrical signals
to other neurons in the brain

and thus change the animal’s behavior.

With the help of my colleagues,

I pioneered the use of optogenetic tools

to selectively target neurons
that are living in point A,

sending messages down wires
aimed at point B,

leaving neighboring neurons
going other places unaffected.

This approach allowed us to test
the function of each wire

within the tangled mess that is our brain.

A brain region called the amygdala

has long been thought
to be important for emotion,

and my laboratory discovered

that the amygdala
resembles a fork in the road

where activating one path
can drive positive emotion and approach,

and activating another path
can drive negative emotion and avoidance.

I’m going to show you
a couple of examples –

a taste of raw data –

of how we can use optogenetics
to target specific neurons in the brain

and get very specific changes in behavior.

Anxiety patients
have abnormal communication

between two parts of the amygdala,

but in people, it’s hard to know
if this abnormality is cause or effect

of the disease.

We can use optogenetics
to target the same pathway in a mouse,

and see what happens.

So this is the elevated plus maze.

It’s a widely used anxiety test

that measures the amount of time

that the mouse spends in the safety
of the closed arms

relative to exploring the open arms.

Mice have evolved to prefer
enclosed spaces,

like the safety of their burrows,

but to find food, water, mates,

they need to go out into the open

where they’re more vulnerable
to predatory threats.

So I’m sitting in the background here,

and I’m about to flip the switch.

And now, when I flip the switch
and turn the light on,

you can see the mouse begins to explore
the open arms of the maze more.

And in contrast
to drug treatments for anxiety,

there’s no sedation,
no locomotor impairment,

just coordinated,
natural-looking exploration.

So not only is the effect
almost immediate,

but there are no detectable side effects.

Now, when I flip the switch off,

you can see that the mouse goes back
to its normal brain function

and back to its corner.

When I was in the lab
and I was taking these data,

I was all by myself, and I was so excited.

I was so excited,
I did one of these quiet screams.

(Silently) Aah!

(Laughter)

Why was I so excited?

I mean, yeah, theoretically,
I knew that the brain controlled the mind,

but to flip the switch with my hand

and see the mouse
change its behavioral state

so rapidly and so reversibly,

it was really the first time
that I truly believed it.

Since that first breakthrough,

there have been a number
of other discoveries.

Finding specific neural circuits
that can elicit dramatic changes

in animal behavior.

Here’s another example:
compulsive overeating.

We can eat for two reasons.

Seeking pleasure, like tasty food,

or avoiding pain, like being hungry.

How can we find a treatment
for compulsive overeating

without messing up
the hunger-driven feeding

that we need to survive?

The first step is to understand

how the brain gives rise
to feeding behavior.

This fully-fed mouse
is just exploring a space

completely devoid of any food.

Here we’re using optogenetics to target
neurons living in the hypothalamus,

sending messages down wires
aimed at the midbrain.

When I turn the light on, right here,

you can see that the mouse
immediately begins licking the floor.

(Laughter)

This seemingly frenzied behavior

is about to escalate into something
I find really incredible.

It’s kind of trippy, actually.

Ready?

It’s right here.

See, he picks up his hands
as if he is eating a piece of food,

but there’s nothing there,
he’s not holding anything.

So this circuit is sufficient
to drive feeding behavior

in the absence of hunger,

even in the absence of food.

I can’t know for sure
how this mouse is feeling,

but I speculate
these neurons drive craving

based on the behaviors we elicit
when we target this pathway.

Turn the light back off –

animal’s back to normal.

When we silence this pathway,

we can suppress and reduce
compulsive overeating

without altering hunger-driven feeding.

What did you take away
from these two videos

that I just showed you?

That making a very specific change
to neural circuits in the brain

can have specific changes to behavior.

That every conscious
experience that we have

is governed by cells in our brain.

I am the daughter
of a physicist and a biologist,

who literally met on the boat
coming to America

in pursuit of an education.

So naturally,

since there was “no pressure”
to be a scientist …

(Laughter)

as a college student,

I had to decide whether I wanted to focus
on psychology, the study of the mind,

or neuroscience, the study of the brain.

And I chose neuroscience,

because I wanted to understand
how the mind is born

out of biological tissue.

But really, I’ve come
full circle to do both.

And now my research program

bridges the gap between
the mind and the brain.

Research from my laboratory

suggests that we can begin
to tie specific neural circuits

to emotional states.

And we have found a number of circuits

that control anxiety-related behavior,

compulsive overeating,

social interaction, avoidance

and many other types
of motivated behaviors

that may reflect internal
emotional states.

We used to think of functions of the mind
as being defined by brain regions.

But my work shows
that within a given brain region,

there are many different neurons
doing different things.

And these functions
are partly defined by the paths they take.

Here’s a metaphor to help illustrate

how these discoveries change the way
that we think about the brain.

Let’s say that the brain
is analogous to the world

and that neurons are analogous to people.

And we want to understand how information
is transmitted across the planet.

Sure, it’s useful to know

where a given person is located
when recording what they’re saying.

But I would argue
that it’s equally important

to know who this person is talking to,

who is listening

and how the people listening respond
to the information that they receive.

The current state
of mental health treatment

is essentially a strategy
of trial and error.

And it is not working.

The development of new drug therapies
for mental health disorders

has hit a brick wall,

with scarcely any real progress
since the 1950s.

So what does the future hold?

In the near future,

I expect to see a mental health
treatment revolution,

where we focus on specific
neural circuits in the brain.

Diagnoses will be made
based on both behavioral symptoms

and measurable brain activity.

Further in the future,

by combining our ability
to make acute changes to the brain

and get acute changes to behavior

with our knowledge of synaptic plasticity
to make more permanent changes,

we could push the brain
into a state of fixing itself

by reprogramming neural circuits.

Exposure therapy at the circuit level.

Once we switch the brain
into a state of self-healing,

this could potentially have
long-lasting effects

with no side effects.

I can envision a future
where neural circuit reprogramming

represents a potential cure,
not just a treatment.

OK, but what about right now?

If from this very moment forward,

each and every one of you left this talk

and truly believed that the mind
comes entirely from cells in your brain,

then we could immediately get rid
of negative perceptions and stigmas

that prevent so many people

from getting the mental health
support that they need.

Mental health professionals,

we’re always thinking
about what’s the next new treatment.

But before we can apply new treatments,

we need people to feel
comfortable seeking them.

Imagine how dramatically
we could reduce the rates of suicides

and school shootings

if everyone who needed
mental health support actually got it.

When we truly understand
exactly how the mind comes from the brain,

we will improve the lives of everyone

who will have a mental illness
in their lifetime –

half the population –

as well as everyone else
with whom they share the world.

Thank you.

(Applause)

抄写员:Ivana Korom
审稿人:Krystian Aparta

我将首先说一些
你认为你知道是真的的话。

你的大脑创造
了你思想的方方面面。

那么,如果我们认为我们知道思想来自大脑,为什么我们对待
精神和身体疾病的方式

如此不同

呢?

作为一名神经科学家,我经常被告知

不允许我研究大脑
如何代表

焦虑、渴望或孤独等内部状态

,因此我决定
着手去做。

我的研究计划旨在

通过研究大脑回路来了解大脑。

具体来说,我们的大脑是如何
产生情绪的。

研究
感觉和情绪真的很难,

因为你无法衡量它们。

行为仍然是最好的,也是

了解他人情感体验的唯一窗口。

对于动物和人来说,

是的,自我报告是一种行为输出。

动机行为
分为两大类:

寻求快乐和避免痛苦。

接近
对你有利的

事情并避免对你不利的事情的能力

是生存的基础。

在我们的现代社会中,

难以区分
可以被贴上精神疾病的标签。

如果我遇到了汽车故障

,我把我的车开到修理工

那里,他们做的第一件事
就是查看引擎盖下的情况。

但通过心理健康研究,

你不能只
按一个按钮就打开引擎盖。

所以这就是我们
在动物身上做实验的原因。

具体来说,在我的实验室里,老鼠。

要了解大脑,
我们需要研究大脑。

第一次,我们实际上可以。

我们可以打开引擎盖。

我们可以看看

里面做一个实验
,看看结果如何。

技术打开了
进入我们思想黑匣子的新窗口。

光遗传学工具的

发展使我们能够前所未有地控制
大脑中的特定神经元

以及它们如何
通过发射电信号相互交谈。

我们可以对神经元进行基因改造
,使其对光敏感

,然后使用光来
控制神经元的发射方式。

这可以改变动物的行为,

让我们
深入了解神经回路可以做什么。

想知道科学家是如何解决
这个问题的吗?

科学家们
通过

借鉴其他基础科学领域的知识开发了光遗传学工具。

藻类
是进化为向光游动的单细胞生物。

当蓝光照射
到藻类细胞的眼斑上时,

一个通道就会打开,
发送一个电信号

,使小鞭毛

拍动并将藻类推向阳光。

如果我们克隆
藻类的这种光敏部分

,然后通过基因改造将其添加到神经元中

我们也可以使神经元对光敏感。

除了神经元,

当我们将光线照射
到大脑深处的光纤时,

我们改变了它们向
大脑中其他神经元发送电信号的方式

,从而改变了动物的行为。

在我的同事的帮助下,

我率先使用光遗传学工具

来选择性地
针对生活在 A 点的神经元,

通过电线
向 B 点发送信息,

而使邻近的神经元
不受影响地去往其他地方。

这种方法使我们能够测试我们大脑
中每根线的功能

一个叫做杏仁核的大脑区域

一直被认为
对情绪很重要

,我的实验室

发现杏仁核
就像一个岔路口

,激活一条路径
可以驱动积极情绪和接近

,激活另一条路径
可以驱动消极情绪和回避 .

我将向你展示
几个例子——

原始数据的味道

——我们如何使用光遗传学
来瞄准大脑中的特定神经元

并获得非常具体的行为变化。

焦虑症患者

的杏仁核两部分之间存在异常交流,

但在人中,很难
知道这种异常是疾病的原因还是结果

我们可以使用光遗传学
来靶向小鼠体内的相同通路

,看看会发生什么。

所以这是高架十字迷宫。

这是一种广泛使用的焦虑测试

,用于测量

小鼠在闭合臂的安全性

上相对于探索张开臂所花费的时间。

老鼠已经进化到更喜欢
封闭的空间,

比如它们的洞穴的安全性,

但是为了寻找食物、水和配偶,

它们需要到

更容易
受到掠食性威胁的开阔地带。

所以我坐在后台

,我正要拨动开关。

而现在,当我拨动开关
并打开灯时,

你可以看到鼠标开始更多地探索
迷宫的张开双臂。


焦虑症的药物治疗相比,

没有镇静剂,
没有运动障碍,

只是协调的、
自然的探索。

因此,不仅效果
几乎是立竿见影的,

而且没有可检测到的副作用。

现在,当我关闭开关时,

您可以看到鼠标恢复
了正常的大脑功能

并回到了角落。

当我在实验室
并获取这些数据时,

我一个人,我非常兴奋。

我太兴奋了,
我发出了这些安静的尖叫声之一。

(无声)啊!

(笑声)

为什么我这么兴奋?

我的意思是,是的,理论上,
我知道大脑控制着思想,

但是用手拨动开关

,看到老鼠

如此迅速和如此可逆地改变其行为状态,

这真的
是我第一次真正相信它。

自第一次突破以来,

还有
许多其他发现。

寻找
可以引起动物行为显着变化的特定神经回路

这是另一个例子:
强迫性暴饮暴食。

我们可以吃有两个原因。

寻求快乐,如美味的食物,

或避免痛苦,如饥饿。

我们如何才能找到一种
治疗强迫性暴饮暴食的方法,

而不会破坏我们生存所需
的饥饿驱动的喂养

方式?

第一步是

了解大脑如何
产生进食行为。

这只饱食的老鼠
只是在探索一个

完全没有食物的空间。

在这里,我们使用光遗传学来针对
生活在下丘脑中的神经元,

通过
针对中脑的电线发送信息。

当我打开灯时,就在这里,

你可以看到老鼠
立即开始舔地板。

(笑声)

这种看似疯狂的行为

即将升级为
我认为非常不可思议的事情。

实际上,这有点迷幻。

准备好?

它就在这里。

看,他举起手
,好像他在吃一块食物,

但那里什么都没有,
他没有拿着任何东西。

所以这个回路足以

在没有饥饿的情况下驱动摄食行为,

即使是在没有食物的情况下。

我不能确定
这只老鼠的感觉如何,

但我推测
这些神经元会

根据
我们在靶向这条通路时引发的行为来驱动渴望。

把灯关掉——

动物恢复正常。

当我们沉默这条途径时,

我们可以在

不改变饥饿驱动的喂养的情况下抑制和减少强迫性暴饮暴食。

你从

我刚刚给你看的这两个视频中学到了什么?

对大脑中的神经回路进行非常具体的改变

可以对行为产生具体的改变。

我们所拥有的每一次有意识的
体验

都由我们大脑中的细胞控制。


是一位物理学家和一位生物学家的女儿,

他们在

美国求学的船上相遇。

所以很自然,

既然“没有压力
”成为一名科学家……

(笑声)

作为一名大学生,

我必须决定是要专注
于心理学,研究心灵,

还是神经科学,研究大脑。 脑。

我选择了神经科学,

因为我想
了解大脑是如何

从生物组织中诞生的。

但实际上,我已经
完成了这两件事。

现在,我的研究计划

弥合
了思想和大脑之间的鸿沟。

我实验室的

研究表明,我们可以开始
将特定的神经回路

与情绪状态联系起来。

我们发现了许多

控制焦虑相关行为、

强迫性暴饮暴食、

社交互动、回避

和许多其他类型
的动机行为的回路,这些

行为可能反映了内部
情绪状态。

我们曾经认为大脑的功能
是由大脑区域定义的。

但我的工作表明
,在给定的大脑区域内,

有许多不同的神经元
在做不同的事情。

这些
功能部分是由它们所采用的路径定义的。

这里有一个比喻来帮助

说明这些发现如何
改变我们对大脑的看法。

假设
大脑类似于世界

,神经元类似于人。

我们想了解信息
是如何在地球上传播的。

当然,在记录他们所说的内容时

知道给定人的位置很有用

但我
认为,同样重要的是

要知道这个人在和谁说话,

谁在听

,以及听的人如何
回应他们收到的信息。

当前
的心理健康治疗

状态本质上是一种
反复试验的策略。

它不工作。 自 1950 年代以来,针对精神健康障碍

的新药物疗法的开发

遇到了障碍

,几乎没有任何真正的进展

那么未来会怎样呢?

在不久的将来,

我希望看到一场心理健康
治疗革命

,我们专注
于大脑中的特定神经回路。


根据行为症状

和可测量的大脑活动进行诊断。

在未来,

通过将我们
对大脑进行急性改变和对行为进行急性改变的能力

与我们对突触可塑性的了解相结合
以做出更持久的改变,

我们可以通过重新编程神经回路将大脑推
入自我修复的状态

电路层面的暴露疗法。

一旦我们将大脑切换
到自我修复状态,

这可能会产生
持久的影响

而没有副作用。

我可以设想一个未来
,神经回路重新编程

代表一种潜在的治愈方法,
而不仅仅是一种治疗方法。

好的,但是现在呢?

如果从这一刻起,

你们每个人都离开了这个演讲

,真正相信思想
完全来自你大脑中的细胞,

那么我们就可以立即摆脱阻碍这么多人获得精神
的负面看法和污名。

他们需要的健康支持。

心理健康专业人士,

我们一直在
思考下一个新疗法是什么。

但在我们可以应用新的治疗方法之前,

我们需要人们感到
舒适地寻求它们。

想象一下

如果每个需要
心理健康支持的人都真正得到它,我们可以多么显着地降低自杀和学校枪击事件的发生率。

当我们
真正了解思想是如何从大脑中产生时,

我们将改善每个在其

一生中患有精神疾病
的人——

占人口的一半——

以及
与他们共享世界的其他所有人的生活。

谢谢你。

(掌声)