Why the octopus brain is so extraordinary Cludio L. Guerra

What could octopuses possibly
have in common with us?

After all, they don’t have lungs, spines,
or even a plural noun we can all agree on.

But what they do have is the ability
to solve puzzles,

learn through observation,

and even use tools,

just like some other animals we know.

And what makes octopus intelligence
so amazing

is that it comes
from a biological structure

completely different from ours.

The 200 or so species of octopuses

are mollusks
belonging to the order cephalopoda,

Greek for head-feet.

Those heads contain impressively
large brains,

with a brain to body ratio similar
to that of other intelligent animals,

and a complex nervous system with
about as many neurons as that of a dog.

But instead of being
centralized in the brain,

these 500 million neurons are spread out
in a network of interconnected ganglia

organized into three basic structures.

The central brain only contains
about 10% of the neurons,

while the two huge optic lobes
contain about 30%.

The other 60% are in the tentacles,

which for humans would be like
our arms having minds of their own.

This is where things
get even more interesting.

Vertebrates like us have a rigid skeleton
to support our bodies,

with joints that allow us to move.

But not all types of movement are allowed.

You can’t bend your knee backwards,

or bend your forearm in the middle,
for example.

Cephalopods, on the other hand,
have no bones at all,

allowing them to bend their limbs
at any point and in any direction.

So shaping their tentacles

into any one of the virtually
limitless number of possible arrangements

is unlike anything we are used to.

Consider a simple task,
like grabbing and eating an apple.

The human brain contains a neurological
map of our body.

When you see the apple,

your brain’s motor center activates
the appropriate muscles,

allowing you to reach out with your arm,

grab it with your hand,

bend your elbow joint,

and bring it to your mouth.

For an octopus,
the process is quite different.

Rather than a body map,

the cephalopod brain
has a behavior library.

So when an octopus sees food,

its brain doesn’t activate
a specific body part,

but rather a behavioral response to grab.

As the signal travels through the network,

the arm neurons pick up the message

and jump into action
to command the movement.

As soon as the arm touches the food,

a muscle activation wave travels
all the way through the arm to its base,

while the arm sends back another wave
from the base to the tip.

The signals meet halfway
between the food and the base of the arm,

letting it know to bend at that spot.

What all this means is that each
of an octopus’s eight arms

can essentially think for itself.

This gives it amazing flexibility
and creativity

when facing a new situation or problem,

whether its opening
a bottle to reach food,

escaping through a maze,

moving around in a new environment,

changing the texture and the color
of its skin to blend into the scenery,

or even mimicking other creatures
to scare away enemies.

Cephalopods may have evolved
complex brains

long before our vertebrate relatives.

And octopus intelligence isn’t just useful
for octopuses.

Their radically different nervous system
and autonomously thinking appendages

have inspired new research

in developing flexible robots
made of soft materials.

And studying how intelligence can arise
along such a divergent evolutionary path

can help us understand more about
intelligence and consciousness in general.

Who knows what other forms
of intelligent life are possible,

or how they process the world around them.

章鱼可能
与我们有什么共同点?

毕竟,它们没有肺、刺,
甚至没有我们都同意的复数名词。

但它们所拥有的是
解决谜题、

通过观察学习

甚至使用工具的能力,

就像我们认识的其他一些动物一样。

章鱼的智慧
之所以如此惊人,

是因为它

来自与我们完全不同的生物结构。

大约 200 种章鱼

属于软体动物,
属于头足目,

希腊语为头足。

这些头部包含令人印象深刻的
大大脑,

其大脑与身体的比例与
其他智能动物相似,

以及一个复杂的神经系统,
其神经元数量与狗差不多。

但是

这 5 亿个神经元不是集中在大脑中,而是分布
在一个相互连接的神经节网络中,这些神经节

组织成三个基本结构。

中脑只包含
约 10% 的神经元,

而两个巨大的视神经叶则
包含约 30%。

其余的 60% 在触手中

,对于人类来说,这就像
我们的手臂有自己的思想一样。

这就是事情
变得更加有趣的地方。

像我们这样的脊椎动物有一个刚性的骨架
来支撑我们的身体

,关节允许我们移动。

但并非所有类型的移动都是允许的。

例如,你不能向后弯曲膝盖

,或者在中间弯曲前臂

另一方面,头足类动物
根本没有骨头,这

使得它们可以
在任何点和任何方向弯曲四肢。

因此,将它们的触手塑造

成几乎
无限数量的可能排列中的任何一种,

都不同于我们习惯的任何一种。

考虑一个简单的任务,
例如抓住并吃一个苹果。

人脑包含
我们身体的神经图谱。

当你看到苹果时,

你大脑的运动中枢会
激活相应的肌肉,

让你伸出手臂,

用手抓住它,

弯曲肘关节,

然后把它送到嘴边。

对于章鱼来说,
这个过程是完全不同的。

头足类大脑
有一个行为库,而不是身体图。

因此,当章鱼看到食物时,

它的大脑不会激活
特定的身体部位,

而是会做出抓取的行为反应。

当信号通过网络传播时

,手臂神经元接收信息

并开始行动
以指挥运动。

一旦手臂接触到食物

,肌肉激活波
就会一直穿过手臂到达其基部,

同时手臂会
从基部向尖端发送另一个波。

信号
在食物和手臂底部的中间相遇,

让它知道在那个地方弯曲。

这一切
意味着章鱼的八只手臂中的每一只手臂

基本上都可以独立思考。

这使它

在面对新情况或新问题时具有惊人的灵活性和创造力,

无论是
打开瓶子拿到食物,

逃离迷宫,

在新环境中四处走动,

改变皮肤的质地和
颜色以融入风景 ,

甚至模仿其他
生物吓跑敌人。

头足类动物可能

早在我们的脊椎动物亲属之前就已经进化出复杂的大脑。

章鱼的智能不仅仅
对章鱼有用。

它们截然不同的神经系统
和自主思考的

附属物激发

了开发
由软材料制成的柔性机器人的新研究。

研究智能是如何
沿着如此不同的进化路径产生的,

可以帮助我们更多地了解
一般的智能和意识。

谁知道还有哪些其他形式
的智能生命是可能的,

或者它们如何处理周围的世界。