Bridges should be beautiful Ian Firth

The world needs bridges.

Have you ever thought about
what it would be like not to have any?

It’s hard to imagine
a civilization without bridges

because they’re so essential

for growth and development
of human society,

but they’re not just about a safe way
across a river or an obstacle.

They shout about connectivity –

community.

They reveal something about creativity,

our ingenuity –

they even hint at our identity.

And when bridges fail,

or are destroyed in conflict,

communities struggle,

development stagnates, people suffer.

Even today,

there are over one billion people
living in poor, rural communities

around the world

that do not have safe, year-round access

to the things that you
and I take for granted:

education, medical care,
access to markets …

which is why wonderful organizations
like Bridges to Prosperity

build bridges in this kind of place –
this is in Rwanda.

And they make such a difference,

not only to those lives
immediately around the bridge,

but the impact of these bridges is huge,

and it spreads over the whole community,

far, far away.

Of course bridges have been around
for an awfully long time.

The oldest ones are stone
because it’s a very durable material.

I don’t know about you –

I love to look at
the development of technology

to learn about what people did
with the materials

and tools available to them at the time.

So the Pont Du Gard in the center
is a wonderful example –

Roman aqueduct in the South of France –

fantastic piece of technology
built using massive stones put together,

dry – there’s no mortar in those joints.

They’re just dry stone joints –

fantastic

and almost as good as new today.

Or sometimes up in the mountains,

people would build
these suspension bridges,

often across some dizzy canyon,

using a vine.

In this case, this is in Peru.

This is using grass which grows locally

and is woven into ropes
to build these bridges.

And do you know
they rebuild this every year?

Because of course grass
is not a durable material.

So this bridge is unchanged
since Inca times.

And bridges can be
symbols of their location.

Of course, Golden Gate
and Sydney are well familiar.

In Mostar the bridge was synonymous
with the name of the place,

and to such an extent
that in the war in 1993

when the bridge was destroyed,

the town all but lost its identity
until the bridge was reconstructed.

And bridges are enormous
features in our landscape –

not just enormous,
sometimes there’s small ones –

and they are really significant features,

and I believe we have a duty
to make our bridges beautiful.

Thankfully, many people do.

Think of the stunning Millau Viaduct
in the South of France.

French engineer Michel Virlogeux
and British architect Lord Foster

collaborated together to produce something

which is a really spectacular
synergy of architecture and engineering.

Or Robert Maillart’s Salginatobel Bridge
in the mountains in Switzerland –

absolutely sublime.

Or more recently,

Laurent Ney’s beautiful
and rather delicate bridge

for Tintagel Castle in the UK.

These are spectacular
and beautiful designs

and we need to see more of this.

Bridges can be considered
in three convenient categories,

depending on the nature
of the structural system

that they adopt
as their principal support.

So, bending, of course,
is the way a beam will behave –

so, beams and bending.

Or compression is the principal
way of operating for an arch.

Or for the really long spans
you need to go lightweight,

as we’ll see in a minute,

and you’ll use tension, cables –

suspension bridges.

And the opportunity
for variety is enormous.

Engineers have a fantastic scope
for innovation and ingenuity

and developing different forms
around these types.

But technological change
happens relatively slowly in my world,

believe it or not,

compared to the changes
that happen in mobile phone technology

and computers and digital
technologies and so on.

In our world of construction,

the changes seem positively glacial.

And the reason for this
can be summarized in one word:

risk.

Structural engineers like me manage risk.

We are responsible for structural safety.

That’s what we do.

And when we design bridges like these,

I have to balance the probability
that loads will be excessive on one side

or the strength will be
too low on the other side.

Both of which, incidentally,
are full of uncertainty usually,

and so it’s a probabilistic problem,

and we have to make sure

that there’s an adequate margin
for safety between the two, of course.

There’s no such thing, I have to tell you,

as absolute safety.

Contrary to popular belief,

zero risk doesn’t exist.

Engineers have to do their calculations
and get their sums right

to make sure that those margins are there,

and society expects them to do so,

which is why it’s all the more alarming
when things like this happen.

I’m not going to go into the reasons
for these tragedies,

but they are part of the reason

why technological change
happens quite slowly.

Nobody wants this to happen.

Clients don’t want this to happen
on their projects, obviously.

And yet of course they want innovation.

Innovation is vital.

As an engineer, it’s part of my DNA.

It’s in my blood.

I couldn’t be a very good engineer
if I wasn’t wanting to innovate,

but we have to do so from a position
of knowledge and strength

and understanding.

It’s no good taking a leap in the dark,

and civilization has learned from mistakes
since the beginning of time –

no one more so than engineers.

Some of you may have seen
this film before –

this is the very famous
Tacoma Narrows Bridge collapse

in Tacoma, Washington state,

The bridge became known
as “Galloping Gertie”

because she – she?

Is a bridge female? I don’t know.

She was wobbling like this
for quite a long time,

and notice this twisting motion.

The bridge was far too flexible.

It was designed by a chap
called Leon Moisseiff,

no stranger to suspension bridge design,

but in this case he pushed the limits
just that little bit too far

and paid the price.

Thankfully, nobody was killed.

But this bridge collapse stopped
suspension bridge development

dead in its tracks.

For 10 years nobody thought
about doing another suspension bridge.

There were none.

And when they did emerge in the 1950s,

they were an understandable overreaction,

this sort of oversafe response
to what had happened.

But when it did occur in the mid-60s,

there was indeed a step change –

an innovation,
a technological step change.

This is the Severn Bridge in the UK.

Notice the aerodynamically
streamlined cross section

in the center there.

It’s also a box which makes it
very torsionally stiff –

that twisting motion which we saw
at Tacoma would not happen here.

And it’s also really lightweight,

and as we’ll see in a moment,

lightweight is really
important for long spans,

and everybody seems
to want us to build longer spans.

The longest at the moment is in Japan.

It’s just under 2,000 meters – one span.

Just under two kilometers.

The Akashi Kaikyō Bridge.

We’re currently working on one in Turkey
which is a bit longer,

and we’ve designed
the Messina Bridge in Italy,

which is just waiting to get started
with construction one day,

who knows when.

(Laughter)

I’m going to come back
to Messina in a moment.

But the other kind of long-span bridge
which uses that tension principle

is the cable-stayed bridge,

and we see a lot of these.

In fact, in China they’re building
a whole load of these right now.

The longest of these is the Russky Bridge
in Vladivostok, Russia –

just over 1,100 meters.

But let me take you back to this question
about long-span and lightweight.

This is using Messina Bridge
as an example.

The pie chart in the center represents
the capacity of the main cables –

that’s what holds the bridge up –

the capacity of the main cables.

And notice that 78 percent
of that capacity

is used up just holding the bridge up.

There’s only 22 percent of its capacity –

that’s less than a quarter –

available for the payload,

the stuff that the bridge
is there to support:

the railway, the road and so on.

And in fact,

over 50 percent of that payload –

of that dead load –

is the cable on its own.

Just the cable without any bridge deck.

If we could make that cable lighter,

we could span longer.

Right now if we use the high-strength
steel wire available to us,

we can span, practically speaking,
around about five or six kilometers

if we really push it.

But if we could use
carbon fiber in those cables,

we could go more than 10 kilometers.

That’s pretty spectacular.

But of course superspans is not
necessarily the way to go everywhere.

They’re very expensive

and they’ve got all sorts
of other challenges associated with them,

and we tend to build multispan

when we’re crossing
a wide estuary or a sea crossing.

But of course if that sea crossing
were somewhere like Gibraltar,

or in this case, the Red Sea,

we would indeed be building
multiple superlong spans

and that would be
something spectacular, wouldn’t it?

I don’t think I’m going to see
that one finished in my lifetime,

but it will certainly be worth waiting for
for some of you guys.

Well, I want to tell you about something
which I think is really exciting.

This is a multispan suspension bridge
across very deep water in Norway,

and we’re working on this at the moment.

The deep water means that foundations
are prohibitively expensive.

So this bridge floats.

This is a floating,
multispan suspension bridge.

We’ve had floating bridges before,
but nothing like this.

It stands on floating pontoons

which are tethered to the seabed
and held down –

so, pulled down
against those buoyancy forces,

and in order to make it stable,

the tops of the towers
have to be tied together,

otherwise the whole thing
would just wobble around

and nobody will want to go on that.

But I’m really excited about this

because if you think
about the places around the world

where the water is so deep

that nobody has given a second thought
to the possibility of a bridge

or any kind of crossing,

this now opens up that possibility.

So this one’s being done
by the Norwegian Roads Administration,

but I’m really excited to know

where else will this technology
enable development –

that growing together,

that building of community.

Now, what about concrete?

Concrete gets a pretty bad name sometimes,

but in the hands of people
like Rudy Ricciotti here,

look what you can do with it.

This is what we call ultra-high
performance fiber-reinforced concrete.

It’s a bit of a mouthful.

Us engineers love those kinds of words.

(Laughter)

But what you do with this –

this is really superstrong,
and it’s really durable,

and you can get this fantastic
sculptural quality.

Who said concrete bridges are dull?

We could talk about all sorts
of other new technologies and things

which are going on,

robots and 3-D printing
and AI and all of that,

but I want to take you back to something
which I alluded to earlier on.

Our bridges need to be functional, yes.

They need to be safe – absolutely.

They need to be serviceable and durable.

But I passionately believe
they need to be elegant;

they need to be beautiful.

Our bridges are designed for a long time.

We tend to design for 100 years plus.

They’re going to be there
for an awfully long time.

Nobody is going to remember the cost.

Nobody will remember
whether it overran a few months.

But if it’s ugly or just dull,

it will always be ugly or dull.

(Laughter)

Bridges –

beauty enriches life.

Doesn’t it?

It enhances our well-being.

Ugliness and mediocrity
does exactly the opposite.

And if we go on building
mediocre, ugly environments –

and I believe we’re becoming
numb to that stuff –

if we go on doing that,

it’s something like
a large-scale vandalism,

which is completely unacceptable.

(Applause)

This is a bridge in Lyon in France,

which was procured
through a design competition.

And I think we need to start talking
to those people who procure our bridges

and our structures,

because it’s the procurement
which is often the key.

Design competitions
is one way to get good design,

but it’s not the only one.

There’s an awful lot
of procurement going on

that is absolutely prejudiced
against good design.

So yes, technology happens
a bit slowly sometimes in my world.

But I’m really excited
about what we can do with it.

Whether it’s saving lives in rural Africa

or stretching the boundaries
of long-span technology

or just crossing the road next-door,

I hope we continue to build
elegant and beautiful stuff

that save lives and build communities.

Thank you.

(Applause)

世界需要桥梁。

你有没有想过
没有任何东西会是什么样子?

很难想象
没有桥梁的文明,

因为它们

对人类社会的成长和发展至关重要,

但它们不仅仅是一条安全
的过河或障碍物。

他们大喊连通性——

社区。

它们揭示了一些关于创造力、

我们的独创性的东西——

它们甚至暗示了我们的身份。

当桥梁失效

或在冲突中被摧毁时,

社区就会

陷入困境,发展停滞不前,人们就会受苦。

即使在今天,

全世界仍有超过 10 亿人
生活在贫困的农村社区

,他们无法全年安全地获得

你我认为理所当然的东西:

教育、医疗、
市场准入……

这就是为什么
像Bridges to Prosperity这样的优秀组织

在这种地方建造桥梁的原因——
这就是在卢旺达。

它们产生了如此大的影响,

不仅对
桥周围的那些生命,

而且这些桥的影响是巨大的

,它蔓延到整个社区

,很远很远。

当然,桥梁已经
存在了很长时间。

最古老的是石头,
因为它是一种非常耐用的材料。

我不了解你——

我喜欢看
技术的发展,

以了解人们对当时
可用的材料

和工具做了什么。

因此,中心的 Pont Du Gard
就是一个很好的例子——

法国南部的罗马渡槽——

使用大块石头拼凑而成的奇妙技术,

干燥——这些接缝处没有砂浆。

它们只是干燥的石头关节——

非常棒

,几乎和今天的新石头一样好。

或者有时在山上,

人们会用藤蔓建造
这些悬索桥

,通常穿过一些令人头晕目眩的峡谷

在这种情况下,这是在秘鲁。

这是使用当地生长的草

并编织成绳索
来建造这些桥梁。

你知道
他们每年都会重建这个吗?

因为当然草
不是一种耐用的材料。

所以这座桥
自印加时代以来就没有改变。

桥梁可以
成为其位置的象征。

当然,金门
和悉尼都很熟悉。

在莫斯塔尔,这座桥是
这个地名的代名词,

以至于在 1993 年的战争中

,这座桥被摧毁,

这座小镇几乎失去了它的身份,
直到这座桥被重建。

桥梁是我们景观中的巨大
特征——

不仅仅是巨大的,
有时还有一些小的

——它们确实是重要的特征

,我相信我们有
责任让我们的桥梁变得美丽。

值得庆幸的是,很多人都这样做。

想想法国南部令人惊叹的米洛高架桥

法国工程师 Michel Virlogeux
和英国建筑师福斯特勋爵

合作创造了一些

建筑和工程之间真正壮观的协同作用。

或者罗伯特·梅拉特(Robert Maillart)在瑞士山区的萨尔吉纳托贝尔桥
——

绝对是崇高的。

或者最近,

Laurent Ney 为英国廷塔杰尔城堡设计的美丽
而精致的桥梁

这些都是壮观
而美丽的设计

,我们需要看到更多。

根据桥梁采用的主要支撑结构系统的性质,可以将桥梁
分为三个方便的类别

所以,弯曲当然
是梁的行为方式——

梁和弯曲。

或者压缩是拱门的主要
操作方式。

或者对于非常长的跨度,
您需要轻量化,

正如我们稍后会看到的那样

,您将使用张力,电缆 -

悬索桥。

多样性的机会
是巨大的。

工程师
在创新和独创性方面拥有广阔的空间,

并围绕这些类型开发不同的形式

不管你信不信,


手机技术

、计算机和数字
技术等发生的变化相比,我的世界发生的技术变化相对缓慢。

在我们的建筑世界中,

这些变化似乎是非常缓慢的。

其原因
可以用一个词来概括:

风险。

像我这样的结构工程师管理风险。

我们负责结构安全。

这就是我们所做的。

当我们设计这样的桥梁时,

我必须平衡
一侧负载过大


另一侧强度过低的可能性。

顺便说一句,这两者
通常都充满不确定性

,因此这是一个概率问题,当然

,我们必须

确保两者之间有足够
的安全余量。

我必须告诉你,没有

绝对的安全。

与普遍的看法相反,

零风险并不存在。

工程师必须进行计算
并正确计算总和

以确保存在这些利润,

而社会期望他们这样做,

这就是为什么当这样的事情发生时更加令人担忧的原因

我不打算深入探讨
这些悲剧的原因,

但它们是

技术变革
进展缓慢的部分原因。

没有人希望这种情况发生。 显然,

客户不希望这种情况发生
在他们的项目中。

然而,他们当然想要创新。

创新至关重要。

作为一名工程师,这是我 DNA 的一部分。

它在我的血液中。 如果我不想创新,

我就不可能成为一名非常优秀的工程师

但我们必须从
知识、力量

和理解的立场出发。

在黑暗中跳跃是没有好处的

,文明从一开始就从错误中吸取教训
——

没有人比工程师更能做到这一点。

你们中的一些人可能以前看过
这部电影——

这是1940年华盛顿州塔科马非常著名的
塔科马海峡大桥倒塌

这座桥被
称为“疾驰的格蒂”,

因为她——她?

桥牌是女的吗? 我不知道。

她像这样摇晃
了很长时间,

并注意到这个扭曲的动作。

这座桥太灵活了。

它是由一位
名叫 Leon Moisseiff 的小伙子

设计的,他对悬索桥的设计并不陌生,

但在这种情况下,他将极限推
得太远

并付出了代价。

谢天谢地,没有人被杀。

但这座桥的倒塌使
悬索桥

的发展停滞不前。

10 年来,没有人
想过建造另一座悬索桥。

没有。

当它们在 1950 年代出现时,

它们是一种可以理解的过度反应,

这种
对所发生事情的过度安全反应。

但是,当它在 60 年代中期发生时,确实发生

了一步变化

——创新
,技术上的一步变化。

这是英国的塞文桥。

注意那里中心的空气动力学
流线型横

截面。

它也是一个盒子,使它的
扭转非常僵硬——

我们在塔科马看到的那种扭转运动
不会在这里发生。

而且它真的很轻

,正如我们稍后会看到的,

轻量级
对于长跨度非常重要,

而且每个人似乎
都希望我们建造更长的跨度。

目前最长的是日本。

它不到2000米——一个跨度。

不到两公里。

明石海峡大桥。

我们目前正在
土耳其设计一个更长的时间

,我们已经设计
了意大利的墨西拿大桥,

它正等待
着有一天开始施工,

谁知道什么时候。

(笑声)

我马上就要
回到墨西拿。

但是另一种使用这种张力原理的大跨度桥梁

是斜拉桥

,我们看到很多这样的桥。

事实上,在中国,他们现在正在建造
一整套这样的产品。

其中最长的是俄罗斯
符拉迪沃斯托克的俄罗斯大桥——

刚刚超过 1,100 米。

但是让我带你回到这个
关于长跨度和轻量级的问题。

这里以墨西拿大桥
为例。

中间的饼图代表
主缆的容量——

这就是支撑桥的因素——

主缆的容量。

请注意,

仅支撑这座桥就用完了 78% 的容量。

它只有 22% 的容量

——不到四分之一——

可用于有效载荷,

即桥梁支撑的东西

:铁路、公路等等。

事实上,

超过 50% 的有效载荷

  • 静载 -

本身就是电缆。

只是没有任何桥面的电缆。

如果我们可以使那根电缆更轻,

我们可以跨越更长的时间。

现在如果我们用我们手头的高强度
钢丝,如果真的推的

话,实际上可以跨越
五六公里左右

但如果我们可以
在这些电缆中使用碳纤维,

我们可以走超过 10 公里。

这相当壮观。

但当然,superspans
不一定是无处不在的方式。

它们非常昂贵

,而且还
面临着各种各样的其他挑战,

当我们
穿越宽阔的河口或跨海时,我们倾向于建造多跨度。

但是,当然,如果那个跨海通道
是像直布罗陀这样的地方,

或者在这种情况下是红海,

我们确实会建造
多个超长跨度

,那将是
一件壮观的事情,不是吗?

我不认为我会
在有生之年看到它完成,


对于你们中的一些人来说,等待它肯定是值得的。

好吧,我想告诉你
一些我认为非常令人兴奋的事情。

这是一座横跨挪威很深水域的多跨悬索桥

,我们目前正在努力。

深水意味着地基
非常昂贵。

于是这座桥浮了起来。

这是一座浮动的
多跨悬索桥。

我们以前有过浮桥,
但没有这样的。

它站在漂浮的浮筒上,浮筒

被拴在海床上
并被固定住——

所以,为了
抵抗浮力

而被拉下来,为了使其稳定,

塔的顶部
必须系在一起,

否则整个东西
就会 摇摆不定

,没有人愿意继续这样做。

但我对此感到非常兴奋,

因为如果你
想想世界

各地的水很深

,以至于没有人
重新考虑过桥梁

或任何形式的交叉点的

可能性,现在就打开了这种可能性。

所以这是
由挪威道路管理局完成的,

但我真的很高兴知道

这项技术还能在哪里
促进发展

——共同成长

,建立社区。

现在,混凝土呢?

混凝土有时名声不好,

但在
Rudy Ricciotti 这样的人手中,

看看你能用它做什么。

这就是我们所说的超
高性能纤维增强混凝土。

有点拗口。

我们工程师喜欢这样的词。

(笑声)

但是你用它做什么——

它真的超级强
,真的很耐用

,你可以得到这种奇妙的
雕塑品质。

谁说混凝土桥是沉闷的?

我们可以谈论
各种其他正在发生的新技术和事物

机器人、3-D 打印
和人工智能等等,

但我想带你回到
我之前提到的一些事情上。

我们的桥梁必须是功能性的,是的。

他们需要安全——绝对安全。

它们需要可维修且耐用。

但我坚信
它们需要优雅;

他们需要美丽。

我们的桥梁设计已久。

我们倾向于设计 100 多年。

他们将在那里
待很长时间。

没有人会记住成本。

没有人会记得
它是否超过了几个月。

但如果它丑陋或只是沉闷,

它总是丑陋或沉闷。

(笑声)

桥梁——

美丰富生活。

不是吗?

它增强了我们的幸福感。

丑陋和
平庸恰恰相反。

如果我们继续建造
平庸、丑陋的环境

——我相信我们
对这些东西变得麻木了——

如果我们继续这样做,


就像大规模的破坏行为,

这是完全不可接受的。

(掌声)

这是法国里昂的一座桥

,是
通过设计竞赛采购的。

我认为我们需要开始
与那些采购我们的桥梁

和结构的人交谈,

因为
采购往往是关键。

设计竞赛
是获得优秀设计的一种方式,

但并不是唯一的方式。

有大量的

采购绝对不
利于良好的设计。

所以,是的,
在我的世界里,技术有时会发生得有点慢。

但我真的很
兴奋我们能用它做什么。

无论是拯救非洲农村的生命,

还是扩展大
跨度技术的边界,

或者只是过马路隔壁,

我希望我们继续建造
优雅而美丽的东西

,拯救生命和建设社区。

谢谢你。

(掌声)