A camera that can see around corners David Lindell

Transcriber: Ivana Korom
Reviewer: Krystian Aparta

In the future,

self-driving cars will be safer
and more reliable than humans.

But for this to happen,

we need technologies
that allow cars to respond

faster than humans,

we need algorithms
that can drive better than humans

and we need cameras
that can see more than humans can see.

For example, imagine a self-driving car
is about to make a blind turn,

and there’s an oncoming car

or perhaps there’s a child
about to run into the street.

Fortunately, our future car
will have this superpower,

a camera that can see around corners
to detect these potential hazards.

For the past few years as a PhD student

in the Stanford Computational Imaging Lab,

I’ve been working on a camera
that can do just this –

a camera that can image objects
hidden around corners

or blocked from direct line of sight.

So let me give you an example
of what our camera can see.

This is an outdoor experiment we conducted

where our camera system is scanning
the side of this building with a laser,

and the scene that we want to capture

is hidden around the corner
behind this curtain.

So our camera system
can’t actually see it directly.

And yet, somehow,

our camera can still capture
the 3D geometry of this scene.

So how do we do this?

The magic happens here
in this camera system.

You can think of this
as a type of high-speed camera.

Not one that operates
at 1,000 frames per second,

or even a million frames per second,

but a trillion frames per second.

So fast that it can actually capture
the movement of light itself.

And to give you an example
of just how fast light travels,

let’s compare it to the speed
of a fast-running comic book superhero

who can move at up to three times
the speed of sound.

It takes a pulse of light
about 3.3 billionths of a second,

or 3.3 nanoseconds,

to travel the distance of a meter.

Well, in that same time,

our superhero has moved
less than the width of a human hair.

That’s pretty fast.

But actually, we need to image much faster

if we want to capture light
moving at subcentimeter scales.

So our camera system can capture photons

at time frames of just
50 trillionths of a second,

or 50 picoseconds.

So we take this ultra-high-speed camera

and we pair it with a laser
that sends out short pulses of light.

Each pulse travels to this visible wall

and some light scatters
back to our camera,

but we also use the wall
to scatter light around the corner

to the hidden object and back.

We repeat this measurement many times

to capture the arrival times
of many photons

from different locations on the wall.

And after we capture
these measurements, we can create

a trillion-frame-per-second
video of the wall.

While this wall may look
ordinary to our own eyes,

at a trillion frames per second,
we can see something truly incredible.

We can actually see waves of light
scattered back from the hidden scene

and splashing against the wall.

And each of these waves
carries information

about the hidden object that sent it.

So we can take these measurements

and pass them into
a reconstruction algorithm

to then recover the 3D geometry
of this hidden scene.

Now I want to show you one more example
of an indoor scene that we captured,

this time with a variety
of different hidden objects.

And these objects
have different appearances,

so they reflect light differently.

For example, this glossy dragon statue
reflects light differently

than the mirror disco ball

or the white discus thrower statue.

And we can actually see the differences
in the reflected light

by visualizing it as this 3D volume,

where we’ve just taken the video frames
and stacked them together.

And time here is represented
as the depth dimension of this cube.

These bright dots that you see
are reflections of light

from each of the mirrored
facets of the disco ball,

scattering against the wall over time.

The bright streaks of light that you see
arriving soonest in time

are from the glossy dragon statue
that’s closest to the wall,

and the other streaks of light come from
reflections of light from the bookcase

and from the statue.

Now, we can also visualize
these measurements frame by frame,

as a video,

to directly see the scattered light.

And again, here we see, first,
reflections of light from the dragon,

closest to the wall,

followed by bright dots
from the disco ball

and other reflections from the bookcase.

And finally, we see the reflected
waves of light from the statue.

These waves of light illuminating the wall

are like fireworks that last
for just trillionths of a second.

And even though these objects
reflect light differently,

we can still reconstruct their shapes.

And this is what you can see
from around the corner.

Now, I want to show you one more example
that’s slightly different.

In this video, you see me
dressed in this reflective suit

and our camera system is scanning the wall
at a rate of four times every second.

The suit is reflective,

so we can actually capture enough photons

that we can see where I am
and what I’m doing,

without the camera
actually directly imaging me.

By capturing photons that scatter
from the wall to my tracksuit,

back to the wall and back to the camera,

we can capture this indirect
video in real time.

And we think that this type
of practical non-line-of-sight imaging

could be useful for applications
including for self-driving cars,

but also for biomedical imaging,

where we need to see
into the tiny structures of the body.

And perhaps we could also put
similar camera systems on the robots

that we send to explore other planets.

Now you may have heard
about seeing around corners before,

but what I showed you today
would have been impossible

just two years ago.

For example, we can now image large,
room-sized hidden scenes outdoors

and at real-time rates,

and we’ve made significant advancements
towards making this a practical technology

that you could actually see
on a car someday.

But of course, there’s still
challenges remaining.

For example, can we image
hidden scenes at long distances

where we’re collecting
very, very few photons,

with lasers that are low-power
and that are eye-safe.

Or can we create images from photons

that have scattered around many more times

than just a single bounce
around the corner?

Can we take our prototype system
that’s, well, currently large and bulky,

and miniaturize it into something
that could be useful

for biomedical imaging

or perhaps a sort of improved
home-security system,

or can we take this new imaging modality
and use it for other applications?

I think it’s an exciting new technology

and there could be other things
that we haven’t thought of yet

to use it for.

And so, well, a future
with self-driving cars

may seem distant to us now –

we’re already developing the technologies

that could make cars safer
and more intelligent.

And with the rapid pace
of scientific discovery and innovation,

you never know what new
and exciting capabilities

could be just around the corner.

(Applause)

抄写员:Ivana Korom
审稿人:Krystian

Aparta 未来,

自动驾驶汽车将比人类更安全
、更可靠。

但要实现这一点,

我们需要
让汽车比人类做出更快反应的技术

我们需要
比人类驾驶得更好的算法,我们需要比人类看得

更远的摄像头

例如,想象一辆自动驾驶汽车
即将盲转

,有一辆迎面而来的汽车,

或者可能有一个
孩子要跑到街上。

幸运的是,我们未来的汽车
将拥有这种超能力,

一个可以看到拐角处以
检测这些潜在危险的摄像头。

在过去的几年里,作为

斯坦福计算成像实验室的一名博士生,

我一直在研究
一种可以做到这一点

的相机——一种可以对
隐藏在角落

或被直接视线遮挡的物体进行成像的相机。

所以让我举一个例子
,说明我们的相机可以看到什么。

这是我们进行的一项户外实验

,我们的摄像系统正在
用激光扫描这座建筑物的侧面

,我们想要捕捉的场景

隐藏在
窗帘后面的拐角处。

所以我们的相机系统
实际上不能直接看到它。

然而,不知何故,

我们的相机仍然可以捕捉
到这个场景的 3D 几何图形。

那么我们该怎么做呢?

神奇的地方发生
在这个相机系统中。

您可以将其
视为一种高速相机。

不是
以每秒 1,000 帧

甚至每秒一百万帧的速度运行,

而是每秒运行一万亿帧。

速度如此之快,以至于它实际上可以捕捉
到光本身的运动。

为了给你举个
例子,说明光的传播速度有多快,

让我们将它与
一个快速运行的漫画书超级英雄的速度进行比较,

后者的移动
速度可达音速的三倍。

一个光脉冲需要
大约 3.3 亿分之一秒

或 3.3 纳秒

才能传播一米的距离。

好吧,在同一时间,

我们的超级英雄移动了
不到一根头发丝的宽度。

这相当快。

但实际上,

如果我们想要捕捉
亚厘米级移动的光,我们需要更快地成像。

因此,我们的相机系统可以


50 万亿分之一秒

或 50 皮秒的时间范围内捕捉光子。

因此,我们将这台超高速相机


发出短脉冲光的激光器配对。

每个脉冲都会传播到这面可见的墙壁

,一些光会散射
回我们的相机,

但我们也使用墙壁
将拐角处的光散射

到隐藏的物体并返回。

我们多次重复此测量,

以捕捉

来自墙上不同位置的许多光子的到达时间。

在我们捕获
这些测量结果后,我们可以

创建每秒万亿帧
的墙壁视频。

虽然这堵墙
在我们自己看来可能看起来很普通,但

以每秒一万亿帧的速度,
我们可以看到真正令人难以置信的东西。

我们实际上可以看到光波
从隐藏的场景中散射回来

并溅到墙上。

这些波中的每一个都
携带

有关发送它的隐藏对象的信息。

所以我们可以进行这些测量

并将它们传递
给重建算法

,然后恢复
这个隐藏场景的 3D 几何形状。

现在,我想再向您展示
我们捕捉到的室内场景的另一个示例,

这次包含
各种不同的隐藏对象。

而且这些物体
有不同的外观,

所以它们反射光的方式也不同。

例如,这个有光泽的龙雕像
反射光线的方式

与镜子迪斯科球

或白色铁饼投掷者雕像不同。

我们实际上可以通过
将反射

光可视化为这个 3D 体积来看到反射光的差异

,我们刚刚拍摄了视频帧
并将它们堆叠在一起。

而这里的时间表示
为这个立方体的深度维度。

你看到的这些亮点是

来自
迪斯科球每个镜像面的光的反射,

随着时间的推移在墙上散射。

你看到的最快到达的明亮光条

来自最靠近墙壁的光滑的龙雕像

,其他的光条
来自书柜和雕像的光反射

现在,我们还可以将
这些测量值逐帧可视

化为视频

,直接看到散射光。

再一次,我们在这里看到,首先
是离墙壁最近的龙的光反射

其次
是迪斯科球的亮点

和书柜的其他反射。

最后,我们看到了雕像反射的
光波。

这些照亮墙壁的光波

就像持续
数万亿分之一秒的烟花。

即使这些物体
反射光的方式不同,

我们仍然可以重建它们的形状。

这就是你
从拐角处可以看到的。

现在,我想再举
一个稍微不同的例子。

在这段视频中,你看到我
穿着这件反光服

,我们的摄像系统
以每秒四次的速度扫描墙壁。

这套衣服是反光的,

所以我们实际上可以捕捉到足够的光子

,我们可以看到我在哪里
以及我在做什么,

而不需要相机
直接对我进行成像。

通过捕捉
从墙壁散射到我的运动服、

回到墙壁和相机的光子,

我们可以实时捕捉这个间接
视频。

我们认为
这种实用的非视距成像

可用于
包括自动驾驶汽车在内的应用,

也可用于生物医学成像

,我们需要看到
身体的微小结构。

也许我们也可以
在我们派去探索其他行星的机器人上安装类似的摄像系统

现在您可能听说
过看到拐角处,

但我今天向您展示的内容在两年前
是不可能的

例如,我们现在可以在户外以实时速率对大型、
房间大小的隐藏场景进行成像

并且我们已经取得了重大
进展,使其成为

有一天您可以在汽车上实际看到的实用技术。

但当然,仍然存在
挑战。

例如,我们能否使用低功率且对人眼安全的激光,

远距离对我们收集的
光子非常非常少的隐藏场景进行成像

或者,我们可以从分散多次的光子创建图像,

而不仅仅是拐角处的一次反弹

我们能否
将我们目前庞大而笨重

的原型系统小型化为

用于生物医学成像

或某种改进的
家庭安全系统的东西,

或者我们是否可以采用这种新的成像模式
并将其用于 其他应用程序?

我认为这是一项令人兴奋的新技术

,可能还有
其他我们尚未想到的

用途。

因此,
自动驾驶汽车的未来

对我们来说似乎很遥远——

我们已经在

开发可以让汽车更安全
、更智能的技术。

随着科学发现和创新的快速发展,

您永远不知道有哪些
令人兴奋的新

功能即将出现。

(掌声)